1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2012 Alexey Korepanov <kaikaikai@yandex.ru>
|
---|
5 | //
|
---|
6 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
9 |
|
---|
10 | #include "main.h"
|
---|
11 | #include <limits>
|
---|
12 | #include <Eigen/Eigenvalues>
|
---|
13 |
|
---|
14 | template<typename MatrixType> void real_qz(const MatrixType& m)
|
---|
15 | {
|
---|
16 | /* this test covers the following files:
|
---|
17 | RealQZ.h
|
---|
18 | */
|
---|
19 | using std::abs;
|
---|
20 | typedef typename MatrixType::Index Index;
|
---|
21 | typedef typename MatrixType::Scalar Scalar;
|
---|
22 |
|
---|
23 | Index dim = m.cols();
|
---|
24 |
|
---|
25 | MatrixType A = MatrixType::Random(dim,dim),
|
---|
26 | B = MatrixType::Random(dim,dim);
|
---|
27 |
|
---|
28 |
|
---|
29 | // Regression test for bug 985: Randomly set rows or columns to zero
|
---|
30 | Index k=internal::random<Index>(0, dim-1);
|
---|
31 | switch(internal::random<int>(0,10)) {
|
---|
32 | case 0:
|
---|
33 | A.row(k).setZero(); break;
|
---|
34 | case 1:
|
---|
35 | A.col(k).setZero(); break;
|
---|
36 | case 2:
|
---|
37 | B.row(k).setZero(); break;
|
---|
38 | case 3:
|
---|
39 | B.col(k).setZero(); break;
|
---|
40 | default:
|
---|
41 | break;
|
---|
42 | }
|
---|
43 |
|
---|
44 | RealQZ<MatrixType> qz(A,B);
|
---|
45 |
|
---|
46 | VERIFY_IS_EQUAL(qz.info(), Success);
|
---|
47 | // check for zeros
|
---|
48 | bool all_zeros = true;
|
---|
49 | for (Index i=0; i<A.cols(); i++)
|
---|
50 | for (Index j=0; j<i; j++) {
|
---|
51 | if (abs(qz.matrixT()(i,j))!=Scalar(0.0))
|
---|
52 | all_zeros = false;
|
---|
53 | if (j<i-1 && abs(qz.matrixS()(i,j))!=Scalar(0.0))
|
---|
54 | all_zeros = false;
|
---|
55 | if (j==i-1 && j>0 && abs(qz.matrixS()(i,j))!=Scalar(0.0) && abs(qz.matrixS()(i-1,j-1))!=Scalar(0.0))
|
---|
56 | all_zeros = false;
|
---|
57 | }
|
---|
58 | VERIFY_IS_EQUAL(all_zeros, true);
|
---|
59 | VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixS()*qz.matrixZ(), A);
|
---|
60 | VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixT()*qz.matrixZ(), B);
|
---|
61 | VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixQ().adjoint(), MatrixType::Identity(dim,dim));
|
---|
62 | VERIFY_IS_APPROX(qz.matrixZ()*qz.matrixZ().adjoint(), MatrixType::Identity(dim,dim));
|
---|
63 | }
|
---|
64 |
|
---|
65 | void test_real_qz()
|
---|
66 | {
|
---|
67 | int s = 0;
|
---|
68 | for(int i = 0; i < g_repeat; i++) {
|
---|
69 | CALL_SUBTEST_1( real_qz(Matrix4f()) );
|
---|
70 | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
|
---|
71 | CALL_SUBTEST_2( real_qz(MatrixXd(s,s)) );
|
---|
72 |
|
---|
73 | // some trivial but implementation-wise tricky cases
|
---|
74 | CALL_SUBTEST_2( real_qz(MatrixXd(1,1)) );
|
---|
75 | CALL_SUBTEST_2( real_qz(MatrixXd(2,2)) );
|
---|
76 | CALL_SUBTEST_3( real_qz(Matrix<double,1,1>()) );
|
---|
77 | CALL_SUBTEST_4( real_qz(Matrix2d()) );
|
---|
78 | }
|
---|
79 |
|
---|
80 | TEST_SET_BUT_UNUSED_VARIABLE(s)
|
---|
81 | }
|
---|