1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
---|
5 | //
|
---|
6 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
9 |
|
---|
10 | #include "main.h"
|
---|
11 |
|
---|
12 | template<typename MatrixType> void matrixRedux(const MatrixType& m)
|
---|
13 | {
|
---|
14 | typedef typename MatrixType::Index Index;
|
---|
15 | typedef typename MatrixType::Scalar Scalar;
|
---|
16 | typedef typename MatrixType::RealScalar RealScalar;
|
---|
17 |
|
---|
18 | Index rows = m.rows();
|
---|
19 | Index cols = m.cols();
|
---|
20 |
|
---|
21 | MatrixType m1 = MatrixType::Random(rows, cols);
|
---|
22 |
|
---|
23 | // The entries of m1 are uniformly distributed in [0,1], so m1.prod() is very small. This may lead to test
|
---|
24 | // failures if we underflow into denormals. Thus, we scale so that entires are close to 1.
|
---|
25 | MatrixType m1_for_prod = MatrixType::Ones(rows, cols) + RealScalar(0.2) * m1;
|
---|
26 |
|
---|
27 | VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1));
|
---|
28 | VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy
|
---|
29 | Scalar s(0), p(1), minc(numext::real(m1.coeff(0))), maxc(numext::real(m1.coeff(0)));
|
---|
30 | for(int j = 0; j < cols; j++)
|
---|
31 | for(int i = 0; i < rows; i++)
|
---|
32 | {
|
---|
33 | s += m1(i,j);
|
---|
34 | p *= m1_for_prod(i,j);
|
---|
35 | minc = (std::min)(numext::real(minc), numext::real(m1(i,j)));
|
---|
36 | maxc = (std::max)(numext::real(maxc), numext::real(m1(i,j)));
|
---|
37 | }
|
---|
38 | const Scalar mean = s/Scalar(RealScalar(rows*cols));
|
---|
39 |
|
---|
40 | VERIFY_IS_APPROX(m1.sum(), s);
|
---|
41 | VERIFY_IS_APPROX(m1.mean(), mean);
|
---|
42 | VERIFY_IS_APPROX(m1_for_prod.prod(), p);
|
---|
43 | VERIFY_IS_APPROX(m1.real().minCoeff(), numext::real(minc));
|
---|
44 | VERIFY_IS_APPROX(m1.real().maxCoeff(), numext::real(maxc));
|
---|
45 |
|
---|
46 | // test slice vectorization assuming assign is ok
|
---|
47 | Index r0 = internal::random<Index>(0,rows-1);
|
---|
48 | Index c0 = internal::random<Index>(0,cols-1);
|
---|
49 | Index r1 = internal::random<Index>(r0+1,rows)-r0;
|
---|
50 | Index c1 = internal::random<Index>(c0+1,cols)-c0;
|
---|
51 | VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).sum(), m1.block(r0,c0,r1,c1).eval().sum());
|
---|
52 | VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).mean(), m1.block(r0,c0,r1,c1).eval().mean());
|
---|
53 | VERIFY_IS_APPROX(m1_for_prod.block(r0,c0,r1,c1).prod(), m1_for_prod.block(r0,c0,r1,c1).eval().prod());
|
---|
54 | VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().minCoeff(), m1.block(r0,c0,r1,c1).real().eval().minCoeff());
|
---|
55 | VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().maxCoeff(), m1.block(r0,c0,r1,c1).real().eval().maxCoeff());
|
---|
56 |
|
---|
57 | // regression for bug 1090
|
---|
58 | const int R1 = MatrixType::RowsAtCompileTime>=2 ? MatrixType::RowsAtCompileTime/2 : 6;
|
---|
59 | const int C1 = MatrixType::ColsAtCompileTime>=2 ? MatrixType::ColsAtCompileTime/2 : 6;
|
---|
60 | if(R1<=rows-r0 && C1<=cols-c0)
|
---|
61 | {
|
---|
62 | VERIFY_IS_APPROX( (m1.template block<R1,C1>(r0,c0).sum()), m1.block(r0,c0,R1,C1).sum() );
|
---|
63 | }
|
---|
64 |
|
---|
65 | // test empty objects
|
---|
66 | VERIFY_IS_APPROX(m1.block(r0,c0,0,0).sum(), Scalar(0));
|
---|
67 | VERIFY_IS_APPROX(m1.block(r0,c0,0,0).prod(), Scalar(1));
|
---|
68 | }
|
---|
69 |
|
---|
70 | template<typename VectorType> void vectorRedux(const VectorType& w)
|
---|
71 | {
|
---|
72 | using std::abs;
|
---|
73 | typedef typename VectorType::Index Index;
|
---|
74 | typedef typename VectorType::Scalar Scalar;
|
---|
75 | typedef typename NumTraits<Scalar>::Real RealScalar;
|
---|
76 | Index size = w.size();
|
---|
77 |
|
---|
78 | VectorType v = VectorType::Random(size);
|
---|
79 | VectorType v_for_prod = VectorType::Ones(size) + Scalar(0.2) * v; // see comment above declaration of m1_for_prod
|
---|
80 |
|
---|
81 | for(int i = 1; i < size; i++)
|
---|
82 | {
|
---|
83 | Scalar s(0), p(1);
|
---|
84 | RealScalar minc(numext::real(v.coeff(0))), maxc(numext::real(v.coeff(0)));
|
---|
85 | for(int j = 0; j < i; j++)
|
---|
86 | {
|
---|
87 | s += v[j];
|
---|
88 | p *= v_for_prod[j];
|
---|
89 | minc = (std::min)(minc, numext::real(v[j]));
|
---|
90 | maxc = (std::max)(maxc, numext::real(v[j]));
|
---|
91 | }
|
---|
92 | VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.head(i).sum()), Scalar(1));
|
---|
93 | VERIFY_IS_APPROX(p, v_for_prod.head(i).prod());
|
---|
94 | VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff());
|
---|
95 | VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff());
|
---|
96 | }
|
---|
97 |
|
---|
98 | for(int i = 0; i < size-1; i++)
|
---|
99 | {
|
---|
100 | Scalar s(0), p(1);
|
---|
101 | RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i)));
|
---|
102 | for(int j = i; j < size; j++)
|
---|
103 | {
|
---|
104 | s += v[j];
|
---|
105 | p *= v_for_prod[j];
|
---|
106 | minc = (std::min)(minc, numext::real(v[j]));
|
---|
107 | maxc = (std::max)(maxc, numext::real(v[j]));
|
---|
108 | }
|
---|
109 | VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.tail(size-i).sum()), Scalar(1));
|
---|
110 | VERIFY_IS_APPROX(p, v_for_prod.tail(size-i).prod());
|
---|
111 | VERIFY_IS_APPROX(minc, v.real().tail(size-i).minCoeff());
|
---|
112 | VERIFY_IS_APPROX(maxc, v.real().tail(size-i).maxCoeff());
|
---|
113 | }
|
---|
114 |
|
---|
115 | for(int i = 0; i < size/2; i++)
|
---|
116 | {
|
---|
117 | Scalar s(0), p(1);
|
---|
118 | RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i)));
|
---|
119 | for(int j = i; j < size-i; j++)
|
---|
120 | {
|
---|
121 | s += v[j];
|
---|
122 | p *= v_for_prod[j];
|
---|
123 | minc = (std::min)(minc, numext::real(v[j]));
|
---|
124 | maxc = (std::max)(maxc, numext::real(v[j]));
|
---|
125 | }
|
---|
126 | VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.segment(i, size-2*i).sum()), Scalar(1));
|
---|
127 | VERIFY_IS_APPROX(p, v_for_prod.segment(i, size-2*i).prod());
|
---|
128 | VERIFY_IS_APPROX(minc, v.real().segment(i, size-2*i).minCoeff());
|
---|
129 | VERIFY_IS_APPROX(maxc, v.real().segment(i, size-2*i).maxCoeff());
|
---|
130 | }
|
---|
131 |
|
---|
132 | // test empty objects
|
---|
133 | VERIFY_IS_APPROX(v.head(0).sum(), Scalar(0));
|
---|
134 | VERIFY_IS_APPROX(v.tail(0).prod(), Scalar(1));
|
---|
135 | VERIFY_RAISES_ASSERT(v.head(0).mean());
|
---|
136 | VERIFY_RAISES_ASSERT(v.head(0).minCoeff());
|
---|
137 | VERIFY_RAISES_ASSERT(v.head(0).maxCoeff());
|
---|
138 | }
|
---|
139 |
|
---|
140 | void test_redux()
|
---|
141 | {
|
---|
142 | // the max size cannot be too large, otherwise reduxion operations obviously generate large errors.
|
---|
143 | int maxsize = (std::min)(100,EIGEN_TEST_MAX_SIZE);
|
---|
144 | TEST_SET_BUT_UNUSED_VARIABLE(maxsize);
|
---|
145 | for(int i = 0; i < g_repeat; i++) {
|
---|
146 | CALL_SUBTEST_1( matrixRedux(Matrix<float, 1, 1>()) );
|
---|
147 | CALL_SUBTEST_1( matrixRedux(Array<float, 1, 1>()) );
|
---|
148 | CALL_SUBTEST_2( matrixRedux(Matrix2f()) );
|
---|
149 | CALL_SUBTEST_2( matrixRedux(Array2f()) );
|
---|
150 | CALL_SUBTEST_3( matrixRedux(Matrix4d()) );
|
---|
151 | CALL_SUBTEST_3( matrixRedux(Array4d()) );
|
---|
152 | CALL_SUBTEST_4( matrixRedux(MatrixXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
|
---|
153 | CALL_SUBTEST_4( matrixRedux(ArrayXXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
|
---|
154 | CALL_SUBTEST_5( matrixRedux(MatrixXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
|
---|
155 | CALL_SUBTEST_5( matrixRedux(ArrayXXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
|
---|
156 | CALL_SUBTEST_6( matrixRedux(MatrixXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
|
---|
157 | CALL_SUBTEST_6( matrixRedux(ArrayXXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
|
---|
158 | }
|
---|
159 | for(int i = 0; i < g_repeat; i++) {
|
---|
160 | CALL_SUBTEST_7( vectorRedux(Vector4f()) );
|
---|
161 | CALL_SUBTEST_7( vectorRedux(Array4f()) );
|
---|
162 | CALL_SUBTEST_5( vectorRedux(VectorXd(internal::random<int>(1,maxsize))) );
|
---|
163 | CALL_SUBTEST_5( vectorRedux(ArrayXd(internal::random<int>(1,maxsize))) );
|
---|
164 | CALL_SUBTEST_8( vectorRedux(VectorXf(internal::random<int>(1,maxsize))) );
|
---|
165 | CALL_SUBTEST_8( vectorRedux(ArrayXf(internal::random<int>(1,maxsize))) );
|
---|
166 | }
|
---|
167 | }
|
---|