1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
---|
5 | //
|
---|
6 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
9 |
|
---|
10 | #include "main.h"
|
---|
11 | #include <limits>
|
---|
12 | #include <Eigen/Eigenvalues>
|
---|
13 |
|
---|
14 | template<typename MatrixType> void verifyIsQuasiTriangular(const MatrixType& T)
|
---|
15 | {
|
---|
16 | typedef typename MatrixType::Index Index;
|
---|
17 |
|
---|
18 | const Index size = T.cols();
|
---|
19 | typedef typename MatrixType::Scalar Scalar;
|
---|
20 |
|
---|
21 | // Check T is lower Hessenberg
|
---|
22 | for(int row = 2; row < size; ++row) {
|
---|
23 | for(int col = 0; col < row - 1; ++col) {
|
---|
24 | VERIFY(T(row,col) == Scalar(0));
|
---|
25 | }
|
---|
26 | }
|
---|
27 |
|
---|
28 | // Check that any non-zero on the subdiagonal is followed by a zero and is
|
---|
29 | // part of a 2x2 diagonal block with imaginary eigenvalues.
|
---|
30 | for(int row = 1; row < size; ++row) {
|
---|
31 | if (T(row,row-1) != Scalar(0)) {
|
---|
32 | VERIFY(row == size-1 || T(row+1,row) == 0);
|
---|
33 | Scalar tr = T(row-1,row-1) + T(row,row);
|
---|
34 | Scalar det = T(row-1,row-1) * T(row,row) - T(row-1,row) * T(row,row-1);
|
---|
35 | VERIFY(4 * det > tr * tr);
|
---|
36 | }
|
---|
37 | }
|
---|
38 | }
|
---|
39 |
|
---|
40 | template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime)
|
---|
41 | {
|
---|
42 | // Test basic functionality: T is quasi-triangular and A = U T U*
|
---|
43 | for(int counter = 0; counter < g_repeat; ++counter) {
|
---|
44 | MatrixType A = MatrixType::Random(size, size);
|
---|
45 | RealSchur<MatrixType> schurOfA(A);
|
---|
46 | VERIFY_IS_EQUAL(schurOfA.info(), Success);
|
---|
47 | MatrixType U = schurOfA.matrixU();
|
---|
48 | MatrixType T = schurOfA.matrixT();
|
---|
49 | verifyIsQuasiTriangular(T);
|
---|
50 | VERIFY_IS_APPROX(A, U * T * U.transpose());
|
---|
51 | }
|
---|
52 |
|
---|
53 | // Test asserts when not initialized
|
---|
54 | RealSchur<MatrixType> rsUninitialized;
|
---|
55 | VERIFY_RAISES_ASSERT(rsUninitialized.matrixT());
|
---|
56 | VERIFY_RAISES_ASSERT(rsUninitialized.matrixU());
|
---|
57 | VERIFY_RAISES_ASSERT(rsUninitialized.info());
|
---|
58 |
|
---|
59 | // Test whether compute() and constructor returns same result
|
---|
60 | MatrixType A = MatrixType::Random(size, size);
|
---|
61 | RealSchur<MatrixType> rs1;
|
---|
62 | rs1.compute(A);
|
---|
63 | RealSchur<MatrixType> rs2(A);
|
---|
64 | VERIFY_IS_EQUAL(rs1.info(), Success);
|
---|
65 | VERIFY_IS_EQUAL(rs2.info(), Success);
|
---|
66 | VERIFY_IS_EQUAL(rs1.matrixT(), rs2.matrixT());
|
---|
67 | VERIFY_IS_EQUAL(rs1.matrixU(), rs2.matrixU());
|
---|
68 |
|
---|
69 | // Test maximum number of iterations
|
---|
70 | RealSchur<MatrixType> rs3;
|
---|
71 | rs3.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A);
|
---|
72 | VERIFY_IS_EQUAL(rs3.info(), Success);
|
---|
73 | VERIFY_IS_EQUAL(rs3.matrixT(), rs1.matrixT());
|
---|
74 | VERIFY_IS_EQUAL(rs3.matrixU(), rs1.matrixU());
|
---|
75 | if (size > 2) {
|
---|
76 | rs3.setMaxIterations(1).compute(A);
|
---|
77 | VERIFY_IS_EQUAL(rs3.info(), NoConvergence);
|
---|
78 | VERIFY_IS_EQUAL(rs3.getMaxIterations(), 1);
|
---|
79 | }
|
---|
80 |
|
---|
81 | MatrixType Atriangular = A;
|
---|
82 | Atriangular.template triangularView<StrictlyLower>().setZero();
|
---|
83 | rs3.setMaxIterations(1).compute(Atriangular); // triangular matrices do not need any iterations
|
---|
84 | VERIFY_IS_EQUAL(rs3.info(), Success);
|
---|
85 | VERIFY_IS_EQUAL(rs3.matrixT(), Atriangular);
|
---|
86 | VERIFY_IS_EQUAL(rs3.matrixU(), MatrixType::Identity(size, size));
|
---|
87 |
|
---|
88 | // Test computation of only T, not U
|
---|
89 | RealSchur<MatrixType> rsOnlyT(A, false);
|
---|
90 | VERIFY_IS_EQUAL(rsOnlyT.info(), Success);
|
---|
91 | VERIFY_IS_EQUAL(rs1.matrixT(), rsOnlyT.matrixT());
|
---|
92 | VERIFY_RAISES_ASSERT(rsOnlyT.matrixU());
|
---|
93 |
|
---|
94 | if (size > 2)
|
---|
95 | {
|
---|
96 | // Test matrix with NaN
|
---|
97 | A(0,0) = std::numeric_limits<typename MatrixType::Scalar>::quiet_NaN();
|
---|
98 | RealSchur<MatrixType> rsNaN(A);
|
---|
99 | VERIFY_IS_EQUAL(rsNaN.info(), NoConvergence);
|
---|
100 | }
|
---|
101 | }
|
---|
102 |
|
---|
103 | void test_schur_real()
|
---|
104 | {
|
---|
105 | CALL_SUBTEST_1(( schur<Matrix4f>() ));
|
---|
106 | CALL_SUBTEST_2(( schur<MatrixXd>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4)) ));
|
---|
107 | CALL_SUBTEST_3(( schur<Matrix<float, 1, 1> >() ));
|
---|
108 | CALL_SUBTEST_4(( schur<Matrix<double, 3, 3, Eigen::RowMajor> >() ));
|
---|
109 |
|
---|
110 | // Test problem size constructors
|
---|
111 | CALL_SUBTEST_5(RealSchur<MatrixXf>(10));
|
---|
112 | }
|
---|