1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
|
---|
5 | // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
|
---|
6 | //
|
---|
7 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
8 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
10 | #include <iostream>
|
---|
11 | #include <fstream>
|
---|
12 | #include <iomanip>
|
---|
13 |
|
---|
14 | #include "main.h"
|
---|
15 | #include <Eigen/LevenbergMarquardt>
|
---|
16 |
|
---|
17 | using namespace std;
|
---|
18 | using namespace Eigen;
|
---|
19 |
|
---|
20 | template <typename Scalar>
|
---|
21 | struct sparseGaussianTest : SparseFunctor<Scalar, int>
|
---|
22 | {
|
---|
23 | typedef Matrix<Scalar,Dynamic,1> VectorType;
|
---|
24 | typedef SparseFunctor<Scalar,int> Base;
|
---|
25 | typedef typename Base::JacobianType JacobianType;
|
---|
26 | sparseGaussianTest(int inputs, int values) : SparseFunctor<Scalar,int>(inputs,values)
|
---|
27 | { }
|
---|
28 |
|
---|
29 | VectorType model(const VectorType& uv, VectorType& x)
|
---|
30 | {
|
---|
31 | VectorType y; //Change this to use expression template
|
---|
32 | int m = Base::values();
|
---|
33 | int n = Base::inputs();
|
---|
34 | eigen_assert(uv.size()%2 == 0);
|
---|
35 | eigen_assert(uv.size() == n);
|
---|
36 | eigen_assert(x.size() == m);
|
---|
37 | y.setZero(m);
|
---|
38 | int half = n/2;
|
---|
39 | VectorBlock<const VectorType> u(uv, 0, half);
|
---|
40 | VectorBlock<const VectorType> v(uv, half, half);
|
---|
41 | Scalar coeff;
|
---|
42 | for (int j = 0; j < m; j++)
|
---|
43 | {
|
---|
44 | for (int i = 0; i < half; i++)
|
---|
45 | {
|
---|
46 | coeff = (x(j)-i)/v(i);
|
---|
47 | coeff *= coeff;
|
---|
48 | if (coeff < 1. && coeff > 0.)
|
---|
49 | y(j) += u(i)*std::pow((1-coeff), 2);
|
---|
50 | }
|
---|
51 | }
|
---|
52 | return y;
|
---|
53 | }
|
---|
54 | void initPoints(VectorType& uv_ref, VectorType& x)
|
---|
55 | {
|
---|
56 | m_x = x;
|
---|
57 | m_y = this->model(uv_ref,x);
|
---|
58 | }
|
---|
59 | int operator()(const VectorType& uv, VectorType& fvec)
|
---|
60 | {
|
---|
61 | int m = Base::values();
|
---|
62 | int n = Base::inputs();
|
---|
63 | eigen_assert(uv.size()%2 == 0);
|
---|
64 | eigen_assert(uv.size() == n);
|
---|
65 | int half = n/2;
|
---|
66 | VectorBlock<const VectorType> u(uv, 0, half);
|
---|
67 | VectorBlock<const VectorType> v(uv, half, half);
|
---|
68 | fvec = m_y;
|
---|
69 | Scalar coeff;
|
---|
70 | for (int j = 0; j < m; j++)
|
---|
71 | {
|
---|
72 | for (int i = 0; i < half; i++)
|
---|
73 | {
|
---|
74 | coeff = (m_x(j)-i)/v(i);
|
---|
75 | coeff *= coeff;
|
---|
76 | if (coeff < 1. && coeff > 0.)
|
---|
77 | fvec(j) -= u(i)*std::pow((1-coeff), 2);
|
---|
78 | }
|
---|
79 | }
|
---|
80 | return 0;
|
---|
81 | }
|
---|
82 |
|
---|
83 | int df(const VectorType& uv, JacobianType& fjac)
|
---|
84 | {
|
---|
85 | int m = Base::values();
|
---|
86 | int n = Base::inputs();
|
---|
87 | eigen_assert(n == uv.size());
|
---|
88 | eigen_assert(fjac.rows() == m);
|
---|
89 | eigen_assert(fjac.cols() == n);
|
---|
90 | int half = n/2;
|
---|
91 | VectorBlock<const VectorType> u(uv, 0, half);
|
---|
92 | VectorBlock<const VectorType> v(uv, half, half);
|
---|
93 | Scalar coeff;
|
---|
94 |
|
---|
95 | //Derivatives with respect to u
|
---|
96 | for (int col = 0; col < half; col++)
|
---|
97 | {
|
---|
98 | for (int row = 0; row < m; row++)
|
---|
99 | {
|
---|
100 | coeff = (m_x(row)-col)/v(col);
|
---|
101 | coeff = coeff*coeff;
|
---|
102 | if(coeff < 1. && coeff > 0.)
|
---|
103 | {
|
---|
104 | fjac.coeffRef(row,col) = -(1-coeff)*(1-coeff);
|
---|
105 | }
|
---|
106 | }
|
---|
107 | }
|
---|
108 | //Derivatives with respect to v
|
---|
109 | for (int col = 0; col < half; col++)
|
---|
110 | {
|
---|
111 | for (int row = 0; row < m; row++)
|
---|
112 | {
|
---|
113 | coeff = (m_x(row)-col)/v(col);
|
---|
114 | coeff = coeff*coeff;
|
---|
115 | if(coeff < 1. && coeff > 0.)
|
---|
116 | {
|
---|
117 | fjac.coeffRef(row,col+half) = -4 * (u(col)/v(col))*coeff*(1-coeff);
|
---|
118 | }
|
---|
119 | }
|
---|
120 | }
|
---|
121 | return 0;
|
---|
122 | }
|
---|
123 |
|
---|
124 | VectorType m_x, m_y; //Data points
|
---|
125 | };
|
---|
126 |
|
---|
127 |
|
---|
128 | template<typename T>
|
---|
129 | void test_sparseLM_T()
|
---|
130 | {
|
---|
131 | typedef Matrix<T,Dynamic,1> VectorType;
|
---|
132 |
|
---|
133 | int inputs = 10;
|
---|
134 | int values = 2000;
|
---|
135 | sparseGaussianTest<T> sparse_gaussian(inputs, values);
|
---|
136 | VectorType uv(inputs),uv_ref(inputs);
|
---|
137 | VectorType x(values);
|
---|
138 | // Generate the reference solution
|
---|
139 | uv_ref << -2, 1, 4 ,8, 6, 1.8, 1.2, 1.1, 1.9 , 3;
|
---|
140 | //Generate the reference data points
|
---|
141 | x.setRandom();
|
---|
142 | x = 10*x;
|
---|
143 | x.array() += 10;
|
---|
144 | sparse_gaussian.initPoints(uv_ref, x);
|
---|
145 |
|
---|
146 |
|
---|
147 | // Generate the initial parameters
|
---|
148 | VectorBlock<VectorType> u(uv, 0, inputs/2);
|
---|
149 | VectorBlock<VectorType> v(uv, inputs/2, inputs/2);
|
---|
150 | v.setOnes();
|
---|
151 | //Generate u or Solve for u from v
|
---|
152 | u.setOnes();
|
---|
153 |
|
---|
154 | // Solve the optimization problem
|
---|
155 | LevenbergMarquardt<sparseGaussianTest<T> > lm(sparse_gaussian);
|
---|
156 | int info;
|
---|
157 | // info = lm.minimize(uv);
|
---|
158 |
|
---|
159 | VERIFY_IS_EQUAL(info,1);
|
---|
160 | // Do a step by step solution and save the residual
|
---|
161 | int maxiter = 200;
|
---|
162 | int iter = 0;
|
---|
163 | MatrixXd Err(values, maxiter);
|
---|
164 | MatrixXd Mod(values, maxiter);
|
---|
165 | LevenbergMarquardtSpace::Status status;
|
---|
166 | status = lm.minimizeInit(uv);
|
---|
167 | if (status==LevenbergMarquardtSpace::ImproperInputParameters)
|
---|
168 | return ;
|
---|
169 |
|
---|
170 | }
|
---|
171 | void test_sparseLM()
|
---|
172 | {
|
---|
173 | CALL_SUBTEST_1(test_sparseLM_T<double>());
|
---|
174 |
|
---|
175 | // CALL_SUBTEST_2(test_sparseLM_T<std::complex<double>());
|
---|
176 | }
|
---|