source: pacpussensors/trunk/Vislab/lib3dv-1.2.0/lib3dv/eigen/test/sparse_permutations.cpp

Last change on this file was 136, checked in by ldecherf, 8 years ago

Doc

File size: 7.3 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#include "sparse.h"
11
12template<int OtherStorage, typename SparseMatrixType> void sparse_permutations(const SparseMatrixType& ref)
13{
14 typedef typename SparseMatrixType::Index Index;
15
16 const Index rows = ref.rows();
17 const Index cols = ref.cols();
18 typedef typename SparseMatrixType::Scalar Scalar;
19 typedef typename SparseMatrixType::Index Index;
20 typedef SparseMatrix<Scalar, OtherStorage, Index> OtherSparseMatrixType;
21 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
22 typedef Matrix<Index,Dynamic,1> VectorI;
23
24 double density = (std::max)(8./(rows*cols), 0.01);
25
26 SparseMatrixType mat(rows, cols), up(rows,cols), lo(rows,cols);
27 OtherSparseMatrixType res;
28 DenseMatrix mat_d = DenseMatrix::Zero(rows, cols), up_sym_d, lo_sym_d, res_d;
29
30 initSparse<Scalar>(density, mat_d, mat, 0);
31
32 up = mat.template triangularView<Upper>();
33 lo = mat.template triangularView<Lower>();
34
35 up_sym_d = mat_d.template selfadjointView<Upper>();
36 lo_sym_d = mat_d.template selfadjointView<Lower>();
37
38 VERIFY_IS_APPROX(mat, mat_d);
39 VERIFY_IS_APPROX(up, DenseMatrix(mat_d.template triangularView<Upper>()));
40 VERIFY_IS_APPROX(lo, DenseMatrix(mat_d.template triangularView<Lower>()));
41
42 PermutationMatrix<Dynamic> p, p_null;
43 VectorI pi;
44 randomPermutationVector(pi, cols);
45 p.indices() = pi;
46
47 res = mat*p;
48 res_d = mat_d*p;
49 VERIFY(res.isApprox(res_d) && "mat*p");
50
51 res = p*mat;
52 res_d = p*mat_d;
53 VERIFY(res.isApprox(res_d) && "p*mat");
54
55 res = mat*p.inverse();
56 res_d = mat*p.inverse();
57 VERIFY(res.isApprox(res_d) && "mat*inv(p)");
58
59 res = p.inverse()*mat;
60 res_d = p.inverse()*mat_d;
61 VERIFY(res.isApprox(res_d) && "inv(p)*mat");
62
63 res = mat.twistedBy(p);
64 res_d = (p * mat_d) * p.inverse();
65 VERIFY(res.isApprox(res_d) && "p*mat*inv(p)");
66
67
68 res = mat.template selfadjointView<Upper>().twistedBy(p_null);
69 res_d = up_sym_d;
70 VERIFY(res.isApprox(res_d) && "full selfadjoint upper to full");
71
72 res = mat.template selfadjointView<Lower>().twistedBy(p_null);
73 res_d = lo_sym_d;
74 VERIFY(res.isApprox(res_d) && "full selfadjoint lower to full");
75
76
77 res = up.template selfadjointView<Upper>().twistedBy(p_null);
78 res_d = up_sym_d;
79 VERIFY(res.isApprox(res_d) && "upper selfadjoint to full");
80
81 res = lo.template selfadjointView<Lower>().twistedBy(p_null);
82 res_d = lo_sym_d;
83 VERIFY(res.isApprox(res_d) && "lower selfadjoint full");
84
85
86 res = mat.template selfadjointView<Upper>();
87 res_d = up_sym_d;
88 VERIFY(res.isApprox(res_d) && "full selfadjoint upper to full");
89
90 res = mat.template selfadjointView<Lower>();
91 res_d = lo_sym_d;
92 VERIFY(res.isApprox(res_d) && "full selfadjoint lower to full");
93
94 res = up.template selfadjointView<Upper>();
95 res_d = up_sym_d;
96 VERIFY(res.isApprox(res_d) && "upper selfadjoint to full");
97
98 res = lo.template selfadjointView<Lower>();
99 res_d = lo_sym_d;
100 VERIFY(res.isApprox(res_d) && "lower selfadjoint full");
101
102
103 res.template selfadjointView<Upper>() = mat.template selfadjointView<Upper>();
104 res_d = up_sym_d.template triangularView<Upper>();
105 VERIFY(res.isApprox(res_d) && "full selfadjoint upper to upper");
106
107 res.template selfadjointView<Lower>() = mat.template selfadjointView<Upper>();
108 res_d = up_sym_d.template triangularView<Lower>();
109 VERIFY(res.isApprox(res_d) && "full selfadjoint upper to lower");
110
111 res.template selfadjointView<Upper>() = mat.template selfadjointView<Lower>();
112 res_d = lo_sym_d.template triangularView<Upper>();
113 VERIFY(res.isApprox(res_d) && "full selfadjoint lower to upper");
114
115 res.template selfadjointView<Lower>() = mat.template selfadjointView<Lower>();
116 res_d = lo_sym_d.template triangularView<Lower>();
117 VERIFY(res.isApprox(res_d) && "full selfadjoint lower to lower");
118
119
120
121 res.template selfadjointView<Upper>() = mat.template selfadjointView<Upper>().twistedBy(p);
122 res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView<Upper>();
123 VERIFY(res.isApprox(res_d) && "full selfadjoint upper twisted to upper");
124
125 res.template selfadjointView<Upper>() = mat.template selfadjointView<Lower>().twistedBy(p);
126 res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView<Upper>();
127 VERIFY(res.isApprox(res_d) && "full selfadjoint lower twisted to upper");
128
129 res.template selfadjointView<Lower>() = mat.template selfadjointView<Lower>().twistedBy(p);
130 res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView<Lower>();
131 VERIFY(res.isApprox(res_d) && "full selfadjoint lower twisted to lower");
132
133 res.template selfadjointView<Lower>() = mat.template selfadjointView<Upper>().twistedBy(p);
134 res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView<Lower>();
135 VERIFY(res.isApprox(res_d) && "full selfadjoint upper twisted to lower");
136
137
138 res.template selfadjointView<Upper>() = up.template selfadjointView<Upper>().twistedBy(p);
139 res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView<Upper>();
140 VERIFY(res.isApprox(res_d) && "upper selfadjoint twisted to upper");
141
142 res.template selfadjointView<Upper>() = lo.template selfadjointView<Lower>().twistedBy(p);
143 res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView<Upper>();
144 VERIFY(res.isApprox(res_d) && "lower selfadjoint twisted to upper");
145
146 res.template selfadjointView<Lower>() = lo.template selfadjointView<Lower>().twistedBy(p);
147 res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView<Lower>();
148 VERIFY(res.isApprox(res_d) && "lower selfadjoint twisted to lower");
149
150 res.template selfadjointView<Lower>() = up.template selfadjointView<Upper>().twistedBy(p);
151 res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView<Lower>();
152 VERIFY(res.isApprox(res_d) && "upper selfadjoint twisted to lower");
153
154
155 res = mat.template selfadjointView<Upper>().twistedBy(p);
156 res_d = (p * up_sym_d) * p.inverse();
157 VERIFY(res.isApprox(res_d) && "full selfadjoint upper twisted to full");
158
159 res = mat.template selfadjointView<Lower>().twistedBy(p);
160 res_d = (p * lo_sym_d) * p.inverse();
161 VERIFY(res.isApprox(res_d) && "full selfadjoint lower twisted to full");
162
163 res = up.template selfadjointView<Upper>().twistedBy(p);
164 res_d = (p * up_sym_d) * p.inverse();
165 VERIFY(res.isApprox(res_d) && "upper selfadjoint twisted to full");
166
167 res = lo.template selfadjointView<Lower>().twistedBy(p);
168 res_d = (p * lo_sym_d) * p.inverse();
169 VERIFY(res.isApprox(res_d) && "lower selfadjoint twisted to full");
170}
171
172template<typename Scalar> void sparse_permutations_all(int size)
173{
174 CALL_SUBTEST(( sparse_permutations<ColMajor>(SparseMatrix<Scalar, ColMajor>(size,size)) ));
175 CALL_SUBTEST(( sparse_permutations<ColMajor>(SparseMatrix<Scalar, RowMajor>(size,size)) ));
176 CALL_SUBTEST(( sparse_permutations<RowMajor>(SparseMatrix<Scalar, ColMajor>(size,size)) ));
177 CALL_SUBTEST(( sparse_permutations<RowMajor>(SparseMatrix<Scalar, RowMajor>(size,size)) ));
178}
179
180void test_sparse_permutations()
181{
182 for(int i = 0; i < g_repeat; i++) {
183 int s = Eigen::internal::random<int>(1,50);
184 CALL_SUBTEST_1(( sparse_permutations_all<double>(s) ));
185 CALL_SUBTEST_2(( sparse_permutations_all<std::complex<double> >(s) ));
186 }
187}
Note: See TracBrowser for help on using the repository browser.