1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr>
|
---|
5 | // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
---|
6 | //
|
---|
7 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
8 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
9 | #include "sparse.h"
|
---|
10 | #include <Eigen/SparseQR>
|
---|
11 |
|
---|
12 | template<typename MatrixType,typename DenseMat>
|
---|
13 | int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300)
|
---|
14 | {
|
---|
15 | typedef typename MatrixType::Scalar Scalar;
|
---|
16 | int rows = internal::random<int>(1,maxRows);
|
---|
17 | int cols = internal::random<int>(1,rows);
|
---|
18 | double density = (std::max)(8./(rows*cols), 0.01);
|
---|
19 |
|
---|
20 | A.resize(rows,cols);
|
---|
21 | dA.resize(rows,cols);
|
---|
22 | initSparse<Scalar>(density, dA, A,ForceNonZeroDiag);
|
---|
23 | A.makeCompressed();
|
---|
24 | int nop = internal::random<int>(0, internal::random<double>(0,1) > 0.5 ? cols/2 : 0);
|
---|
25 | for(int k=0; k<nop; ++k)
|
---|
26 | {
|
---|
27 | int j0 = internal::random<int>(0,cols-1);
|
---|
28 | int j1 = internal::random<int>(0,cols-1);
|
---|
29 | Scalar s = internal::random<Scalar>();
|
---|
30 | A.col(j0) = s * A.col(j1);
|
---|
31 | dA.col(j0) = s * dA.col(j1);
|
---|
32 | }
|
---|
33 |
|
---|
34 | // if(rows<cols) {
|
---|
35 | // A.conservativeResize(cols,cols);
|
---|
36 | // dA.conservativeResize(cols,cols);
|
---|
37 | // dA.bottomRows(cols-rows).setZero();
|
---|
38 | // }
|
---|
39 |
|
---|
40 | return rows;
|
---|
41 | }
|
---|
42 |
|
---|
43 | template<typename Scalar> void test_sparseqr_scalar()
|
---|
44 | {
|
---|
45 | typedef SparseMatrix<Scalar,ColMajor> MatrixType;
|
---|
46 | typedef Matrix<Scalar,Dynamic,Dynamic> DenseMat;
|
---|
47 | typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
---|
48 | MatrixType A;
|
---|
49 | DenseMat dA;
|
---|
50 | DenseVector refX,x,b;
|
---|
51 | SparseQR<MatrixType, COLAMDOrdering<int> > solver;
|
---|
52 | generate_sparse_rectangular_problem(A,dA);
|
---|
53 |
|
---|
54 | b = dA * DenseVector::Random(A.cols());
|
---|
55 | solver.compute(A);
|
---|
56 | if(internal::random<float>(0,1)>0.5)
|
---|
57 | solver.factorize(A); // this checks that calling analyzePattern is not needed if the pattern do not change.
|
---|
58 | if (solver.info() != Success)
|
---|
59 | {
|
---|
60 | std::cerr << "sparse QR factorization failed\n";
|
---|
61 | exit(0);
|
---|
62 | return;
|
---|
63 | }
|
---|
64 | x = solver.solve(b);
|
---|
65 | if (solver.info() != Success)
|
---|
66 | {
|
---|
67 | std::cerr << "sparse QR factorization failed\n";
|
---|
68 | exit(0);
|
---|
69 | return;
|
---|
70 | }
|
---|
71 |
|
---|
72 | VERIFY_IS_APPROX(A * x, b);
|
---|
73 |
|
---|
74 | //Compare with a dense QR solver
|
---|
75 | ColPivHouseholderQR<DenseMat> dqr(dA);
|
---|
76 | refX = dqr.solve(b);
|
---|
77 |
|
---|
78 | VERIFY_IS_EQUAL(dqr.rank(), solver.rank());
|
---|
79 | if(solver.rank()==A.cols()) // full rank
|
---|
80 | VERIFY_IS_APPROX(x, refX);
|
---|
81 | // else
|
---|
82 | // VERIFY((dA * refX - b).norm() * 2 > (A * x - b).norm() );
|
---|
83 |
|
---|
84 | // Compute explicitly the matrix Q
|
---|
85 | MatrixType Q, QtQ, idM;
|
---|
86 | Q = solver.matrixQ();
|
---|
87 | //Check ||Q' * Q - I ||
|
---|
88 | QtQ = Q * Q.adjoint();
|
---|
89 | idM.resize(Q.rows(), Q.rows()); idM.setIdentity();
|
---|
90 | VERIFY(idM.isApprox(QtQ));
|
---|
91 | }
|
---|
92 | void test_sparseqr()
|
---|
93 | {
|
---|
94 | for(int i=0; i<g_repeat; ++i)
|
---|
95 | {
|
---|
96 | CALL_SUBTEST_1(test_sparseqr_scalar<double>());
|
---|
97 | CALL_SUBTEST_2(test_sparseqr_scalar<std::complex<double> >());
|
---|
98 | }
|
---|
99 | }
|
---|
100 |
|
---|