1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com>
|
---|
5 | //
|
---|
6 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
9 |
|
---|
10 | #include "main.h"
|
---|
11 |
|
---|
12 | #include <Eigen/Core>
|
---|
13 | #include <Eigen/Geometry>
|
---|
14 |
|
---|
15 | #include <Eigen/LU> // required for MatrixBase::determinant
|
---|
16 | #include <Eigen/SVD> // required for SVD
|
---|
17 |
|
---|
18 | using namespace Eigen;
|
---|
19 |
|
---|
20 | // Constructs a random matrix from the unitary group U(size).
|
---|
21 | template <typename T>
|
---|
22 | Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixUnitary(int size)
|
---|
23 | {
|
---|
24 | typedef T Scalar;
|
---|
25 | typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType;
|
---|
26 |
|
---|
27 | MatrixType Q;
|
---|
28 |
|
---|
29 | int max_tries = 40;
|
---|
30 | double is_unitary = false;
|
---|
31 |
|
---|
32 | while (!is_unitary && max_tries > 0)
|
---|
33 | {
|
---|
34 | // initialize random matrix
|
---|
35 | Q = MatrixType::Random(size, size);
|
---|
36 |
|
---|
37 | // orthogonalize columns using the Gram-Schmidt algorithm
|
---|
38 | for (int col = 0; col < size; ++col)
|
---|
39 | {
|
---|
40 | typename MatrixType::ColXpr colVec = Q.col(col);
|
---|
41 | for (int prevCol = 0; prevCol < col; ++prevCol)
|
---|
42 | {
|
---|
43 | typename MatrixType::ColXpr prevColVec = Q.col(prevCol);
|
---|
44 | colVec -= colVec.dot(prevColVec)*prevColVec;
|
---|
45 | }
|
---|
46 | Q.col(col) = colVec.normalized();
|
---|
47 | }
|
---|
48 |
|
---|
49 | // this additional orthogonalization is not necessary in theory but should enhance
|
---|
50 | // the numerical orthogonality of the matrix
|
---|
51 | for (int row = 0; row < size; ++row)
|
---|
52 | {
|
---|
53 | typename MatrixType::RowXpr rowVec = Q.row(row);
|
---|
54 | for (int prevRow = 0; prevRow < row; ++prevRow)
|
---|
55 | {
|
---|
56 | typename MatrixType::RowXpr prevRowVec = Q.row(prevRow);
|
---|
57 | rowVec -= rowVec.dot(prevRowVec)*prevRowVec;
|
---|
58 | }
|
---|
59 | Q.row(row) = rowVec.normalized();
|
---|
60 | }
|
---|
61 |
|
---|
62 | // final check
|
---|
63 | is_unitary = Q.isUnitary();
|
---|
64 | --max_tries;
|
---|
65 | }
|
---|
66 |
|
---|
67 | if (max_tries == 0)
|
---|
68 | eigen_assert(false && "randMatrixUnitary: Could not construct unitary matrix!");
|
---|
69 |
|
---|
70 | return Q;
|
---|
71 | }
|
---|
72 |
|
---|
73 | // Constructs a random matrix from the special unitary group SU(size).
|
---|
74 | template <typename T>
|
---|
75 | Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixSpecialUnitary(int size)
|
---|
76 | {
|
---|
77 | typedef T Scalar;
|
---|
78 |
|
---|
79 | typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType;
|
---|
80 |
|
---|
81 | // initialize unitary matrix
|
---|
82 | MatrixType Q = randMatrixUnitary<Scalar>(size);
|
---|
83 |
|
---|
84 | // tweak the first column to make the determinant be 1
|
---|
85 | Q.col(0) *= numext::conj(Q.determinant());
|
---|
86 |
|
---|
87 | return Q;
|
---|
88 | }
|
---|
89 |
|
---|
90 | template <typename MatrixType>
|
---|
91 | void run_test(int dim, int num_elements)
|
---|
92 | {
|
---|
93 | using std::abs;
|
---|
94 | typedef typename internal::traits<MatrixType>::Scalar Scalar;
|
---|
95 | typedef Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixX;
|
---|
96 | typedef Matrix<Scalar, Eigen::Dynamic, 1> VectorX;
|
---|
97 |
|
---|
98 | // MUST be positive because in any other case det(cR_t) may become negative for
|
---|
99 | // odd dimensions!
|
---|
100 | const Scalar c = abs(internal::random<Scalar>());
|
---|
101 |
|
---|
102 | MatrixX R = randMatrixSpecialUnitary<Scalar>(dim);
|
---|
103 | VectorX t = Scalar(50)*VectorX::Random(dim,1);
|
---|
104 |
|
---|
105 | MatrixX cR_t = MatrixX::Identity(dim+1,dim+1);
|
---|
106 | cR_t.block(0,0,dim,dim) = c*R;
|
---|
107 | cR_t.block(0,dim,dim,1) = t;
|
---|
108 |
|
---|
109 | MatrixX src = MatrixX::Random(dim+1, num_elements);
|
---|
110 | src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1));
|
---|
111 |
|
---|
112 | MatrixX dst = cR_t*src;
|
---|
113 |
|
---|
114 | MatrixX cR_t_umeyama = umeyama(src.block(0,0,dim,num_elements), dst.block(0,0,dim,num_elements));
|
---|
115 |
|
---|
116 | const Scalar error = ( cR_t_umeyama*src - dst ).norm() / dst.norm();
|
---|
117 | VERIFY(error < Scalar(40)*std::numeric_limits<Scalar>::epsilon());
|
---|
118 | }
|
---|
119 |
|
---|
120 | template<typename Scalar, int Dimension>
|
---|
121 | void run_fixed_size_test(int num_elements)
|
---|
122 | {
|
---|
123 | using std::abs;
|
---|
124 | typedef Matrix<Scalar, Dimension+1, Dynamic> MatrixX;
|
---|
125 | typedef Matrix<Scalar, Dimension+1, Dimension+1> HomMatrix;
|
---|
126 | typedef Matrix<Scalar, Dimension, Dimension> FixedMatrix;
|
---|
127 | typedef Matrix<Scalar, Dimension, 1> FixedVector;
|
---|
128 |
|
---|
129 | const int dim = Dimension;
|
---|
130 |
|
---|
131 | // MUST be positive because in any other case det(cR_t) may become negative for
|
---|
132 | // odd dimensions!
|
---|
133 | // Also if c is to small compared to t.norm(), problem is ill-posed (cf. Bug 744)
|
---|
134 | const Scalar c = internal::random<Scalar>(0.5, 2.0);
|
---|
135 |
|
---|
136 | FixedMatrix R = randMatrixSpecialUnitary<Scalar>(dim);
|
---|
137 | FixedVector t = Scalar(32)*FixedVector::Random(dim,1);
|
---|
138 |
|
---|
139 | HomMatrix cR_t = HomMatrix::Identity(dim+1,dim+1);
|
---|
140 | cR_t.block(0,0,dim,dim) = c*R;
|
---|
141 | cR_t.block(0,dim,dim,1) = t;
|
---|
142 |
|
---|
143 | MatrixX src = MatrixX::Random(dim+1, num_elements);
|
---|
144 | src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1));
|
---|
145 |
|
---|
146 | MatrixX dst = cR_t*src;
|
---|
147 |
|
---|
148 | Block<MatrixX, Dimension, Dynamic> src_block(src,0,0,dim,num_elements);
|
---|
149 | Block<MatrixX, Dimension, Dynamic> dst_block(dst,0,0,dim,num_elements);
|
---|
150 |
|
---|
151 | HomMatrix cR_t_umeyama = umeyama(src_block, dst_block);
|
---|
152 |
|
---|
153 | const Scalar error = ( cR_t_umeyama*src - dst ).squaredNorm();
|
---|
154 |
|
---|
155 | VERIFY(error < Scalar(16)*std::numeric_limits<Scalar>::epsilon());
|
---|
156 | }
|
---|
157 |
|
---|
158 | void test_umeyama()
|
---|
159 | {
|
---|
160 | for (int i=0; i<g_repeat; ++i)
|
---|
161 | {
|
---|
162 | const int num_elements = internal::random<int>(40,500);
|
---|
163 |
|
---|
164 | // works also for dimensions bigger than 3...
|
---|
165 | for (int dim=2; dim<8; ++dim)
|
---|
166 | {
|
---|
167 | CALL_SUBTEST_1(run_test<MatrixXd>(dim, num_elements));
|
---|
168 | CALL_SUBTEST_2(run_test<MatrixXf>(dim, num_elements));
|
---|
169 | }
|
---|
170 |
|
---|
171 | CALL_SUBTEST_3((run_fixed_size_test<float, 2>(num_elements)));
|
---|
172 | CALL_SUBTEST_4((run_fixed_size_test<float, 3>(num_elements)));
|
---|
173 | CALL_SUBTEST_5((run_fixed_size_test<float, 4>(num_elements)));
|
---|
174 |
|
---|
175 | CALL_SUBTEST_6((run_fixed_size_test<double, 2>(num_elements)));
|
---|
176 | CALL_SUBTEST_7((run_fixed_size_test<double, 3>(num_elements)));
|
---|
177 | CALL_SUBTEST_8((run_fixed_size_test<double, 4>(num_elements)));
|
---|
178 | }
|
---|
179 |
|
---|
180 | // Those two calls don't compile and result in meaningful error messages!
|
---|
181 | // umeyama(MatrixXcf(),MatrixXcf());
|
---|
182 | // umeyama(MatrixXcd(),MatrixXcd());
|
---|
183 | }
|
---|