source: pacpussensors/trunk/Vislab/lib3dv/eigen/Eigen/src/Core/GeneralProduct.h@ 136

Last change on this file since 136 was 136, checked in by ldecherf, 7 years ago

Doc

File size: 27.4 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_GENERAL_PRODUCT_H
12#define EIGEN_GENERAL_PRODUCT_H
13
14namespace Eigen {
15
16/** \class GeneralProduct
17 * \ingroup Core_Module
18 *
19 * \brief Expression of the product of two general matrices or vectors
20 *
21 * \param LhsNested the type used to store the left-hand side
22 * \param RhsNested the type used to store the right-hand side
23 * \param ProductMode the type of the product
24 *
25 * This class represents an expression of the product of two general matrices.
26 * We call a general matrix, a dense matrix with full storage. For instance,
27 * This excludes triangular, selfadjoint, and sparse matrices.
28 * It is the return type of the operator* between general matrices. Its template
29 * arguments are determined automatically by ProductReturnType. Therefore,
30 * GeneralProduct should never be used direclty. To determine the result type of a
31 * function which involves a matrix product, use ProductReturnType::Type.
32 *
33 * \sa ProductReturnType, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
34 */
35template<typename Lhs, typename Rhs, int ProductType = internal::product_type<Lhs,Rhs>::value>
36class GeneralProduct;
37
38enum {
39 Large = 2,
40 Small = 3
41};
42
43namespace internal {
44
45template<int Rows, int Cols, int Depth> struct product_type_selector;
46
47template<int Size, int MaxSize> struct product_size_category
48{
49 enum { is_large = MaxSize == Dynamic ||
50 Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD,
51 value = is_large ? Large
52 : Size == 1 ? 1
53 : Small
54 };
55};
56
57template<typename Lhs, typename Rhs> struct product_type
58{
59 typedef typename remove_all<Lhs>::type _Lhs;
60 typedef typename remove_all<Rhs>::type _Rhs;
61 enum {
62 MaxRows = _Lhs::MaxRowsAtCompileTime,
63 Rows = _Lhs::RowsAtCompileTime,
64 MaxCols = _Rhs::MaxColsAtCompileTime,
65 Cols = _Rhs::ColsAtCompileTime,
66 MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::MaxColsAtCompileTime,
67 _Rhs::MaxRowsAtCompileTime),
68 Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime,
69 _Rhs::RowsAtCompileTime),
70 LargeThreshold = EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
71 };
72
73 // the splitting into different lines of code here, introducing the _select enums and the typedef below,
74 // is to work around an internal compiler error with gcc 4.1 and 4.2.
75private:
76 enum {
77 rows_select = product_size_category<Rows,MaxRows>::value,
78 cols_select = product_size_category<Cols,MaxCols>::value,
79 depth_select = product_size_category<Depth,MaxDepth>::value
80 };
81 typedef product_type_selector<rows_select, cols_select, depth_select> selector;
82
83public:
84 enum {
85 value = selector::ret
86 };
87#ifdef EIGEN_DEBUG_PRODUCT
88 static void debug()
89 {
90 EIGEN_DEBUG_VAR(Rows);
91 EIGEN_DEBUG_VAR(Cols);
92 EIGEN_DEBUG_VAR(Depth);
93 EIGEN_DEBUG_VAR(rows_select);
94 EIGEN_DEBUG_VAR(cols_select);
95 EIGEN_DEBUG_VAR(depth_select);
96 EIGEN_DEBUG_VAR(value);
97 }
98#endif
99};
100
101
102/* The following allows to select the kind of product at compile time
103 * based on the three dimensions of the product.
104 * This is a compile time mapping from {1,Small,Large}^3 -> {product types} */
105// FIXME I'm not sure the current mapping is the ideal one.
106template<int M, int N> struct product_type_selector<M,N,1> { enum { ret = OuterProduct }; };
107template<int Depth> struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; };
108template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; };
109template<> struct product_type_selector<Small,1, Small> { enum { ret = CoeffBasedProductMode }; };
110template<> struct product_type_selector<1, Small,Small> { enum { ret = CoeffBasedProductMode }; };
111template<> struct product_type_selector<Small,Small,Small> { enum { ret = CoeffBasedProductMode }; };
112template<> struct product_type_selector<Small, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
113template<> struct product_type_selector<Small, Large, 1> { enum { ret = LazyCoeffBasedProductMode }; };
114template<> struct product_type_selector<Large, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
115template<> struct product_type_selector<1, Large,Small> { enum { ret = CoeffBasedProductMode }; };
116template<> struct product_type_selector<1, Large,Large> { enum { ret = GemvProduct }; };
117template<> struct product_type_selector<1, Small,Large> { enum { ret = CoeffBasedProductMode }; };
118template<> struct product_type_selector<Large,1, Small> { enum { ret = CoeffBasedProductMode }; };
119template<> struct product_type_selector<Large,1, Large> { enum { ret = GemvProduct }; };
120template<> struct product_type_selector<Small,1, Large> { enum { ret = CoeffBasedProductMode }; };
121template<> struct product_type_selector<Small,Small,Large> { enum { ret = GemmProduct }; };
122template<> struct product_type_selector<Large,Small,Large> { enum { ret = GemmProduct }; };
123template<> struct product_type_selector<Small,Large,Large> { enum { ret = GemmProduct }; };
124template<> struct product_type_selector<Large,Large,Large> { enum { ret = GemmProduct }; };
125template<> struct product_type_selector<Large,Small,Small> { enum { ret = GemmProduct }; };
126template<> struct product_type_selector<Small,Large,Small> { enum { ret = GemmProduct }; };
127template<> struct product_type_selector<Large,Large,Small> { enum { ret = GemmProduct }; };
128
129} // end namespace internal
130
131/** \class ProductReturnType
132 * \ingroup Core_Module
133 *
134 * \brief Helper class to get the correct and optimized returned type of operator*
135 *
136 * \param Lhs the type of the left-hand side
137 * \param Rhs the type of the right-hand side
138 * \param ProductMode the type of the product (determined automatically by internal::product_mode)
139 *
140 * This class defines the typename Type representing the optimized product expression
141 * between two matrix expressions. In practice, using ProductReturnType<Lhs,Rhs>::Type
142 * is the recommended way to define the result type of a function returning an expression
143 * which involve a matrix product. The class Product should never be
144 * used directly.
145 *
146 * \sa class Product, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
147 */
148template<typename Lhs, typename Rhs, int ProductType>
149struct ProductReturnType
150{
151 // TODO use the nested type to reduce instanciations ????
152// typedef typename internal::nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
153// typedef typename internal::nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
154
155 typedef GeneralProduct<Lhs/*Nested*/, Rhs/*Nested*/, ProductType> Type;
156};
157
158template<typename Lhs, typename Rhs>
159struct ProductReturnType<Lhs,Rhs,CoeffBasedProductMode>
160{
161 typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
162 typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
163 typedef CoeffBasedProduct<LhsNested, RhsNested, EvalBeforeAssigningBit | EvalBeforeNestingBit> Type;
164};
165
166template<typename Lhs, typename Rhs>
167struct ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
168{
169 typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
170 typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
171 typedef CoeffBasedProduct<LhsNested, RhsNested, NestByRefBit> Type;
172};
173
174// this is a workaround for sun CC
175template<typename Lhs, typename Rhs>
176struct LazyProductReturnType : public ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
177{};
178
179/***********************************************************************
180* Implementation of Inner Vector Vector Product
181***********************************************************************/
182
183// FIXME : maybe the "inner product" could return a Scalar
184// instead of a 1x1 matrix ??
185// Pro: more natural for the user
186// Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix
187// product ends up to a row-vector times col-vector product... To tackle this use
188// case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x);
189
190namespace internal {
191
192template<typename Lhs, typename Rhs>
193struct traits<GeneralProduct<Lhs,Rhs,InnerProduct> >
194 : traits<Matrix<typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> >
195{};
196
197}
198
199template<typename Lhs, typename Rhs>
200class GeneralProduct<Lhs, Rhs, InnerProduct>
201 : internal::no_assignment_operator,
202 public Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1>
203{
204 typedef Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> Base;
205 public:
206 GeneralProduct(const Lhs& lhs, const Rhs& rhs)
207 {
208 Base::coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
209 }
210
211 /** Convertion to scalar */
212 operator const typename Base::Scalar() const {
213 return Base::coeff(0,0);
214 }
215};
216
217/***********************************************************************
218* Implementation of Outer Vector Vector Product
219***********************************************************************/
220
221namespace internal {
222
223// Column major
224template<typename ProductType, typename Dest, typename Func>
225EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest& dest, const Func& func, const false_type&)
226{
227 typedef typename Dest::Index Index;
228 // FIXME make sure lhs is sequentially stored
229 // FIXME not very good if rhs is real and lhs complex while alpha is real too
230 const Index cols = dest.cols();
231 for (Index j=0; j<cols; ++j)
232 func(dest.col(j), prod.rhs().coeff(0,j) * prod.lhs());
233}
234
235// Row major
236template<typename ProductType, typename Dest, typename Func>
237EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest& dest, const Func& func, const true_type&) {
238 typedef typename Dest::Index Index;
239 // FIXME make sure rhs is sequentially stored
240 // FIXME not very good if lhs is real and rhs complex while alpha is real too
241 const Index rows = dest.rows();
242 for (Index i=0; i<rows; ++i)
243 func(dest.row(i), prod.lhs().coeff(i,0) * prod.rhs());
244}
245
246template<typename Lhs, typename Rhs>
247struct traits<GeneralProduct<Lhs,Rhs,OuterProduct> >
248 : traits<ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs> >
249{};
250
251}
252
253template<typename Lhs, typename Rhs>
254class GeneralProduct<Lhs, Rhs, OuterProduct>
255 : public ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs>
256{
257 template<typename T> struct is_row_major : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {};
258
259 public:
260 EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
261
262 GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
263 {
264 }
265
266 struct set { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() = src; } };
267 struct add { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } };
268 struct sub { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } };
269 struct adds {
270 Scalar m_scale;
271 adds(const Scalar& s) : m_scale(s) {}
272 template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const {
273 dst.const_cast_derived() += m_scale * src;
274 }
275 };
276
277 template<typename Dest>
278 inline void evalTo(Dest& dest) const {
279 internal::outer_product_selector_run(*this, dest, set(), is_row_major<Dest>());
280 }
281
282 template<typename Dest>
283 inline void addTo(Dest& dest) const {
284 internal::outer_product_selector_run(*this, dest, add(), is_row_major<Dest>());
285 }
286
287 template<typename Dest>
288 inline void subTo(Dest& dest) const {
289 internal::outer_product_selector_run(*this, dest, sub(), is_row_major<Dest>());
290 }
291
292 template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
293 {
294 internal::outer_product_selector_run(*this, dest, adds(alpha), is_row_major<Dest>());
295 }
296};
297
298/***********************************************************************
299* Implementation of General Matrix Vector Product
300***********************************************************************/
301
302/* According to the shape/flags of the matrix we have to distinghish 3 different cases:
303 * 1 - the matrix is col-major, BLAS compatible and M is large => call fast BLAS-like colmajor routine
304 * 2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine
305 * 3 - all other cases are handled using a simple loop along the outer-storage direction.
306 * Therefore we need a lower level meta selector.
307 * Furthermore, if the matrix is the rhs, then the product has to be transposed.
308 */
309namespace internal {
310
311template<typename Lhs, typename Rhs>
312struct traits<GeneralProduct<Lhs,Rhs,GemvProduct> >
313 : traits<ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs> >
314{};
315
316template<int Side, int StorageOrder, bool BlasCompatible>
317struct gemv_selector;
318
319} // end namespace internal
320
321template<typename Lhs, typename Rhs>
322class GeneralProduct<Lhs, Rhs, GemvProduct>
323 : public ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs>
324{
325 public:
326 EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
327
328 typedef typename Lhs::Scalar LhsScalar;
329 typedef typename Rhs::Scalar RhsScalar;
330
331 GeneralProduct(const Lhs& a_lhs, const Rhs& a_rhs) : Base(a_lhs,a_rhs)
332 {
333// EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::Scalar, typename Rhs::Scalar>::value),
334// YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
335 }
336
337 enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
338 typedef typename internal::conditional<int(Side)==OnTheRight,_LhsNested,_RhsNested>::type MatrixType;
339
340 template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
341 {
342 eigen_assert(m_lhs.rows() == dst.rows() && m_rhs.cols() == dst.cols());
343 internal::gemv_selector<Side,(int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
344 bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)>::run(*this, dst, alpha);
345 }
346};
347
348namespace internal {
349
350// The vector is on the left => transposition
351template<int StorageOrder, bool BlasCompatible>
352struct gemv_selector<OnTheLeft,StorageOrder,BlasCompatible>
353{
354 template<typename ProductType, typename Dest>
355 static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
356 {
357 Transpose<Dest> destT(dest);
358 enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
359 gemv_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
360 ::run(GeneralProduct<Transpose<const typename ProductType::_RhsNested>,Transpose<const typename ProductType::_LhsNested>, GemvProduct>
361 (prod.rhs().transpose(), prod.lhs().transpose()), destT, alpha);
362 }
363};
364
365template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if;
366
367template<typename Scalar,int Size,int MaxSize>
368struct gemv_static_vector_if<Scalar,Size,MaxSize,false>
369{
370 EIGEN_STRONG_INLINE Scalar* data() { eigen_internal_assert(false && "should never be called"); return 0; }
371};
372
373template<typename Scalar,int Size>
374struct gemv_static_vector_if<Scalar,Size,Dynamic,true>
375{
376 EIGEN_STRONG_INLINE Scalar* data() { return 0; }
377};
378
379template<typename Scalar,int Size,int MaxSize>
380struct gemv_static_vector_if<Scalar,Size,MaxSize,true>
381{
382 #if EIGEN_ALIGN_STATICALLY
383 internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0> m_data;
384 EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; }
385 #else
386 // Some architectures cannot align on the stack,
387 // => let's manually enforce alignment by allocating more data and return the address of the first aligned element.
388 enum {
389 ForceAlignment = internal::packet_traits<Scalar>::Vectorizable,
390 PacketSize = internal::packet_traits<Scalar>::size
391 };
392 internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize)+(ForceAlignment?PacketSize:0),0> m_data;
393 EIGEN_STRONG_INLINE Scalar* data() {
394 return ForceAlignment
395 ? reinterpret_cast<Scalar*>((reinterpret_cast<size_t>(m_data.array) & ~(size_t(15))) + 16)
396 : m_data.array;
397 }
398 #endif
399};
400
401template<> struct gemv_selector<OnTheRight,ColMajor,true>
402{
403 template<typename ProductType, typename Dest>
404 static inline void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
405 {
406 typedef typename ProductType::Index Index;
407 typedef typename ProductType::LhsScalar LhsScalar;
408 typedef typename ProductType::RhsScalar RhsScalar;
409 typedef typename ProductType::Scalar ResScalar;
410 typedef typename ProductType::RealScalar RealScalar;
411 typedef typename ProductType::ActualLhsType ActualLhsType;
412 typedef typename ProductType::ActualRhsType ActualRhsType;
413 typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
414 typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
415 typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
416
417 ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs());
418 ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs());
419
420 ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
421 * RhsBlasTraits::extractScalarFactor(prod.rhs());
422
423 // make sure Dest is a compile-time vector type (bug 1166)
424 typedef typename conditional<Dest::IsVectorAtCompileTime, Dest, typename Dest::ColXpr>::type ActualDest;
425
426 enum {
427 // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
428 // on, the other hand it is good for the cache to pack the vector anyways...
429 EvalToDestAtCompileTime = (ActualDest::InnerStrideAtCompileTime==1),
430 ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex),
431 MightCannotUseDest = (ActualDest::InnerStrideAtCompileTime!=1) || ComplexByReal
432 };
433
434 gemv_static_vector_if<ResScalar,ActualDest::SizeAtCompileTime,ActualDest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
435
436 bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0));
437 bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
438
439 RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);
440
441 ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
442 evalToDest ? dest.data() : static_dest.data());
443
444 if(!evalToDest)
445 {
446 #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
447 int size = dest.size();
448 EIGEN_DENSE_STORAGE_CTOR_PLUGIN
449 #endif
450 if(!alphaIsCompatible)
451 {
452 MappedDest(actualDestPtr, dest.size()).setZero();
453 compatibleAlpha = RhsScalar(1);
454 }
455 else
456 MappedDest(actualDestPtr, dest.size()) = dest;
457 }
458
459 general_matrix_vector_product
460 <Index,LhsScalar,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
461 actualLhs.rows(), actualLhs.cols(),
462 actualLhs.data(), actualLhs.outerStride(),
463 actualRhs.data(), actualRhs.innerStride(),
464 actualDestPtr, 1,
465 compatibleAlpha);
466
467 if (!evalToDest)
468 {
469 if(!alphaIsCompatible)
470 dest += actualAlpha * MappedDest(actualDestPtr, dest.size());
471 else
472 dest = MappedDest(actualDestPtr, dest.size());
473 }
474 }
475};
476
477template<> struct gemv_selector<OnTheRight,RowMajor,true>
478{
479 template<typename ProductType, typename Dest>
480 static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
481 {
482 typedef typename ProductType::LhsScalar LhsScalar;
483 typedef typename ProductType::RhsScalar RhsScalar;
484 typedef typename ProductType::Scalar ResScalar;
485 typedef typename ProductType::Index Index;
486 typedef typename ProductType::ActualLhsType ActualLhsType;
487 typedef typename ProductType::ActualRhsType ActualRhsType;
488 typedef typename ProductType::_ActualRhsType _ActualRhsType;
489 typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
490 typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
491
492 typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
493 typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
494
495 ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
496 * RhsBlasTraits::extractScalarFactor(prod.rhs());
497
498 enum {
499 // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
500 // on, the other hand it is good for the cache to pack the vector anyways...
501 DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1
502 };
503
504 gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
505
506 ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
507 DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());
508
509 if(!DirectlyUseRhs)
510 {
511 #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
512 int size = actualRhs.size();
513 EIGEN_DENSE_STORAGE_CTOR_PLUGIN
514 #endif
515 Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
516 }
517
518 general_matrix_vector_product
519 <Index,LhsScalar,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
520 actualLhs.rows(), actualLhs.cols(),
521 actualLhs.data(), actualLhs.outerStride(),
522 actualRhsPtr, 1,
523 dest.data(), dest.col(0).innerStride(), //NOTE if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166)
524 actualAlpha);
525 }
526};
527
528template<> struct gemv_selector<OnTheRight,ColMajor,false>
529{
530 template<typename ProductType, typename Dest>
531 static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
532 {
533 typedef typename Dest::Index Index;
534 // TODO makes sure dest is sequentially stored in memory, otherwise use a temp
535 const Index size = prod.rhs().rows();
536 for(Index k=0; k<size; ++k)
537 dest += (alpha*prod.rhs().coeff(k)) * prod.lhs().col(k);
538 }
539};
540
541template<> struct gemv_selector<OnTheRight,RowMajor,false>
542{
543 template<typename ProductType, typename Dest>
544 static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
545 {
546 typedef typename Dest::Index Index;
547 // TODO makes sure rhs is sequentially stored in memory, otherwise use a temp
548 const Index rows = prod.rows();
549 for(Index i=0; i<rows; ++i)
550 dest.coeffRef(i) += alpha * (prod.lhs().row(i).cwiseProduct(prod.rhs().transpose())).sum();
551 }
552};
553
554} // end namespace internal
555
556/***************************************************************************
557* Implementation of matrix base methods
558***************************************************************************/
559
560/** \returns the matrix product of \c *this and \a other.
561 *
562 * \note If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
563 *
564 * \sa lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*()
565 */
566template<typename Derived>
567template<typename OtherDerived>
568inline const typename ProductReturnType<Derived, OtherDerived>::Type
569MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
570{
571 // A note regarding the function declaration: In MSVC, this function will sometimes
572 // not be inlined since DenseStorage is an unwindable object for dynamic
573 // matrices and product types are holding a member to store the result.
574 // Thus it does not help tagging this function with EIGEN_STRONG_INLINE.
575 enum {
576 ProductIsValid = Derived::ColsAtCompileTime==Dynamic
577 || OtherDerived::RowsAtCompileTime==Dynamic
578 || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
579 AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
580 SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
581 };
582 // note to the lost user:
583 // * for a dot product use: v1.dot(v2)
584 // * for a coeff-wise product use: v1.cwiseProduct(v2)
585 EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
586 INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
587 EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
588 INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
589 EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
590#ifdef EIGEN_DEBUG_PRODUCT
591 internal::product_type<Derived,OtherDerived>::debug();
592#endif
593 return typename ProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
594}
595
596/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation.
597 *
598 * The returned product will behave like any other expressions: the coefficients of the product will be
599 * computed once at a time as requested. This might be useful in some extremely rare cases when only
600 * a small and no coherent fraction of the result's coefficients have to be computed.
601 *
602 * \warning This version of the matrix product can be much much slower. So use it only if you know
603 * what you are doing and that you measured a true speed improvement.
604 *
605 * \sa operator*(const MatrixBase&)
606 */
607template<typename Derived>
608template<typename OtherDerived>
609const typename LazyProductReturnType<Derived,OtherDerived>::Type
610MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
611{
612 enum {
613 ProductIsValid = Derived::ColsAtCompileTime==Dynamic
614 || OtherDerived::RowsAtCompileTime==Dynamic
615 || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
616 AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
617 SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
618 };
619 // note to the lost user:
620 // * for a dot product use: v1.dot(v2)
621 // * for a coeff-wise product use: v1.cwiseProduct(v2)
622 EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
623 INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
624 EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
625 INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
626 EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
627
628 return typename LazyProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
629}
630
631} // end namespace Eigen
632
633#endif // EIGEN_PRODUCT_H
Note: See TracBrowser for help on using the repository browser.