| 1 | // This file is part of Eigen, a lightweight C++ template library
|
|---|
| 2 | // for linear algebra.
|
|---|
| 3 | //
|
|---|
| 4 | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|---|
| 5 | //
|
|---|
| 6 | // This Source Code Form is subject to the terms of the Mozilla
|
|---|
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
|---|
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|---|
| 9 |
|
|---|
| 10 | #ifndef EIGEN_GENERAL_MATRIX_VECTOR_H
|
|---|
| 11 | #define EIGEN_GENERAL_MATRIX_VECTOR_H
|
|---|
| 12 |
|
|---|
| 13 | namespace Eigen {
|
|---|
| 14 |
|
|---|
| 15 | namespace internal {
|
|---|
| 16 |
|
|---|
| 17 | /* Optimized col-major matrix * vector product:
|
|---|
| 18 | * This algorithm processes 4 columns at onces that allows to both reduce
|
|---|
| 19 | * the number of load/stores of the result by a factor 4 and to reduce
|
|---|
| 20 | * the instruction dependency. Moreover, we know that all bands have the
|
|---|
| 21 | * same alignment pattern.
|
|---|
| 22 | *
|
|---|
| 23 | * Mixing type logic: C += alpha * A * B
|
|---|
| 24 | * | A | B |alpha| comments
|
|---|
| 25 | * |real |cplx |cplx | no vectorization
|
|---|
| 26 | * |real |cplx |real | alpha is converted to a cplx when calling the run function, no vectorization
|
|---|
| 27 | * |cplx |real |cplx | invalid, the caller has to do tmp: = A * B; C += alpha*tmp
|
|---|
| 28 | * |cplx |real |real | optimal case, vectorization possible via real-cplx mul
|
|---|
| 29 | */
|
|---|
| 30 | template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version>
|
|---|
| 31 | struct general_matrix_vector_product<Index,LhsScalar,ColMajor,ConjugateLhs,RhsScalar,ConjugateRhs,Version>
|
|---|
| 32 | {
|
|---|
| 33 | typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
|
|---|
| 34 |
|
|---|
| 35 | enum {
|
|---|
| 36 | Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable
|
|---|
| 37 | && int(packet_traits<LhsScalar>::size)==int(packet_traits<RhsScalar>::size),
|
|---|
| 38 | LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
|
|---|
| 39 | RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
|
|---|
| 40 | ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1
|
|---|
| 41 | };
|
|---|
| 42 |
|
|---|
| 43 | typedef typename packet_traits<LhsScalar>::type _LhsPacket;
|
|---|
| 44 | typedef typename packet_traits<RhsScalar>::type _RhsPacket;
|
|---|
| 45 | typedef typename packet_traits<ResScalar>::type _ResPacket;
|
|---|
| 46 |
|
|---|
| 47 | typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
|
|---|
| 48 | typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
|
|---|
| 49 | typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
|
|---|
| 50 |
|
|---|
| 51 | EIGEN_DONT_INLINE static void run(
|
|---|
| 52 | Index rows, Index cols,
|
|---|
| 53 | const LhsScalar* lhs, Index lhsStride,
|
|---|
| 54 | const RhsScalar* rhs, Index rhsIncr,
|
|---|
| 55 | ResScalar* res, Index resIncr, RhsScalar alpha);
|
|---|
| 56 | };
|
|---|
| 57 |
|
|---|
| 58 | template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version>
|
|---|
| 59 | EIGEN_DONT_INLINE void general_matrix_vector_product<Index,LhsScalar,ColMajor,ConjugateLhs,RhsScalar,ConjugateRhs,Version>::run(
|
|---|
| 60 | Index rows, Index cols,
|
|---|
| 61 | const LhsScalar* lhs, Index lhsStride,
|
|---|
| 62 | const RhsScalar* rhs, Index rhsIncr,
|
|---|
| 63 | ResScalar* res, Index resIncr, RhsScalar alpha)
|
|---|
| 64 | {
|
|---|
| 65 | EIGEN_UNUSED_VARIABLE(resIncr)
|
|---|
| 66 | eigen_internal_assert(resIncr==1);
|
|---|
| 67 | #ifdef _EIGEN_ACCUMULATE_PACKETS
|
|---|
| 68 | #error _EIGEN_ACCUMULATE_PACKETS has already been defined
|
|---|
| 69 | #endif
|
|---|
| 70 | #define _EIGEN_ACCUMULATE_PACKETS(A0,A13,A2) \
|
|---|
| 71 | pstore(&res[j], \
|
|---|
| 72 | padd(pload<ResPacket>(&res[j]), \
|
|---|
| 73 | padd( \
|
|---|
| 74 | padd(pcj.pmul(EIGEN_CAT(ploa , A0)<LhsPacket>(&lhs0[j]), ptmp0), \
|
|---|
| 75 | pcj.pmul(EIGEN_CAT(ploa , A13)<LhsPacket>(&lhs1[j]), ptmp1)), \
|
|---|
| 76 | padd(pcj.pmul(EIGEN_CAT(ploa , A2)<LhsPacket>(&lhs2[j]), ptmp2), \
|
|---|
| 77 | pcj.pmul(EIGEN_CAT(ploa , A13)<LhsPacket>(&lhs3[j]), ptmp3)) )))
|
|---|
| 78 |
|
|---|
| 79 | conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
|
|---|
| 80 | conj_helper<LhsPacket,RhsPacket,ConjugateLhs,ConjugateRhs> pcj;
|
|---|
| 81 | if(ConjugateRhs)
|
|---|
| 82 | alpha = numext::conj(alpha);
|
|---|
| 83 |
|
|---|
| 84 | enum { AllAligned = 0, EvenAligned, FirstAligned, NoneAligned };
|
|---|
| 85 | const Index columnsAtOnce = 4;
|
|---|
| 86 | const Index peels = 2;
|
|---|
| 87 | const Index LhsPacketAlignedMask = LhsPacketSize-1;
|
|---|
| 88 | const Index ResPacketAlignedMask = ResPacketSize-1;
|
|---|
| 89 | // const Index PeelAlignedMask = ResPacketSize*peels-1;
|
|---|
| 90 | const Index size = rows;
|
|---|
| 91 |
|
|---|
| 92 | // How many coeffs of the result do we have to skip to be aligned.
|
|---|
| 93 | // Here we assume data are at least aligned on the base scalar type.
|
|---|
| 94 | Index alignedStart = internal::first_aligned(res,size);
|
|---|
| 95 | Index alignedSize = ResPacketSize>1 ? alignedStart + ((size-alignedStart) & ~ResPacketAlignedMask) : 0;
|
|---|
| 96 | const Index peeledSize = alignedSize - RhsPacketSize*peels - RhsPacketSize + 1;
|
|---|
| 97 |
|
|---|
| 98 | const Index alignmentStep = LhsPacketSize>1 ? (LhsPacketSize - lhsStride % LhsPacketSize) & LhsPacketAlignedMask : 0;
|
|---|
| 99 | Index alignmentPattern = alignmentStep==0 ? AllAligned
|
|---|
| 100 | : alignmentStep==(LhsPacketSize/2) ? EvenAligned
|
|---|
| 101 | : FirstAligned;
|
|---|
| 102 |
|
|---|
| 103 | // we cannot assume the first element is aligned because of sub-matrices
|
|---|
| 104 | const Index lhsAlignmentOffset = internal::first_aligned(lhs,size);
|
|---|
| 105 |
|
|---|
| 106 | // find how many columns do we have to skip to be aligned with the result (if possible)
|
|---|
| 107 | Index skipColumns = 0;
|
|---|
| 108 | // if the data cannot be aligned (TODO add some compile time tests when possible, e.g. for floats)
|
|---|
| 109 | if( (size_t(lhs)%sizeof(LhsScalar)) || (size_t(res)%sizeof(ResScalar)) )
|
|---|
| 110 | {
|
|---|
| 111 | alignedSize = 0;
|
|---|
| 112 | alignedStart = 0;
|
|---|
| 113 | }
|
|---|
| 114 | else if (LhsPacketSize>1)
|
|---|
| 115 | {
|
|---|
| 116 | eigen_internal_assert(size_t(lhs+lhsAlignmentOffset)%sizeof(LhsPacket)==0 || size<LhsPacketSize);
|
|---|
| 117 |
|
|---|
| 118 | while (skipColumns<LhsPacketSize &&
|
|---|
| 119 | alignedStart != ((lhsAlignmentOffset + alignmentStep*skipColumns)%LhsPacketSize))
|
|---|
| 120 | ++skipColumns;
|
|---|
| 121 | if (skipColumns==LhsPacketSize)
|
|---|
| 122 | {
|
|---|
| 123 | // nothing can be aligned, no need to skip any column
|
|---|
| 124 | alignmentPattern = NoneAligned;
|
|---|
| 125 | skipColumns = 0;
|
|---|
| 126 | }
|
|---|
| 127 | else
|
|---|
| 128 | {
|
|---|
| 129 | skipColumns = (std::min)(skipColumns,cols);
|
|---|
| 130 | // note that the skiped columns are processed later.
|
|---|
| 131 | }
|
|---|
| 132 |
|
|---|
| 133 | eigen_internal_assert( (alignmentPattern==NoneAligned)
|
|---|
| 134 | || (skipColumns + columnsAtOnce >= cols)
|
|---|
| 135 | || LhsPacketSize > size
|
|---|
| 136 | || (size_t(lhs+alignedStart+lhsStride*skipColumns)%sizeof(LhsPacket))==0);
|
|---|
| 137 | }
|
|---|
| 138 | else if(Vectorizable)
|
|---|
| 139 | {
|
|---|
| 140 | alignedStart = 0;
|
|---|
| 141 | alignedSize = size;
|
|---|
| 142 | alignmentPattern = AllAligned;
|
|---|
| 143 | }
|
|---|
| 144 |
|
|---|
| 145 | Index offset1 = (FirstAligned && alignmentStep==1?3:1);
|
|---|
| 146 | Index offset3 = (FirstAligned && alignmentStep==1?1:3);
|
|---|
| 147 |
|
|---|
| 148 | Index columnBound = ((cols-skipColumns)/columnsAtOnce)*columnsAtOnce + skipColumns;
|
|---|
| 149 | for (Index i=skipColumns; i<columnBound; i+=columnsAtOnce)
|
|---|
| 150 | {
|
|---|
| 151 | RhsPacket ptmp0 = pset1<RhsPacket>(alpha*rhs[i*rhsIncr]),
|
|---|
| 152 | ptmp1 = pset1<RhsPacket>(alpha*rhs[(i+offset1)*rhsIncr]),
|
|---|
| 153 | ptmp2 = pset1<RhsPacket>(alpha*rhs[(i+2)*rhsIncr]),
|
|---|
| 154 | ptmp3 = pset1<RhsPacket>(alpha*rhs[(i+offset3)*rhsIncr]);
|
|---|
| 155 |
|
|---|
| 156 | // this helps a lot generating better binary code
|
|---|
| 157 | const LhsScalar *lhs0 = lhs + i*lhsStride, *lhs1 = lhs + (i+offset1)*lhsStride,
|
|---|
| 158 | *lhs2 = lhs + (i+2)*lhsStride, *lhs3 = lhs + (i+offset3)*lhsStride;
|
|---|
| 159 |
|
|---|
| 160 | if (Vectorizable)
|
|---|
| 161 | {
|
|---|
| 162 | /* explicit vectorization */
|
|---|
| 163 | // process initial unaligned coeffs
|
|---|
| 164 | for (Index j=0; j<alignedStart; ++j)
|
|---|
| 165 | {
|
|---|
| 166 | res[j] = cj.pmadd(lhs0[j], pfirst(ptmp0), res[j]);
|
|---|
| 167 | res[j] = cj.pmadd(lhs1[j], pfirst(ptmp1), res[j]);
|
|---|
| 168 | res[j] = cj.pmadd(lhs2[j], pfirst(ptmp2), res[j]);
|
|---|
| 169 | res[j] = cj.pmadd(lhs3[j], pfirst(ptmp3), res[j]);
|
|---|
| 170 | }
|
|---|
| 171 |
|
|---|
| 172 | if (alignedSize>alignedStart)
|
|---|
| 173 | {
|
|---|
| 174 | switch(alignmentPattern)
|
|---|
| 175 | {
|
|---|
| 176 | case AllAligned:
|
|---|
| 177 | for (Index j = alignedStart; j<alignedSize; j+=ResPacketSize)
|
|---|
| 178 | _EIGEN_ACCUMULATE_PACKETS(d,d,d);
|
|---|
| 179 | break;
|
|---|
| 180 | case EvenAligned:
|
|---|
| 181 | for (Index j = alignedStart; j<alignedSize; j+=ResPacketSize)
|
|---|
| 182 | _EIGEN_ACCUMULATE_PACKETS(d,du,d);
|
|---|
| 183 | break;
|
|---|
| 184 | case FirstAligned:
|
|---|
| 185 | {
|
|---|
| 186 | Index j = alignedStart;
|
|---|
| 187 | if(peels>1)
|
|---|
| 188 | {
|
|---|
| 189 | LhsPacket A00, A01, A02, A03, A10, A11, A12, A13;
|
|---|
| 190 | ResPacket T0, T1;
|
|---|
| 191 |
|
|---|
| 192 | A01 = pload<LhsPacket>(&lhs1[alignedStart-1]);
|
|---|
| 193 | A02 = pload<LhsPacket>(&lhs2[alignedStart-2]);
|
|---|
| 194 | A03 = pload<LhsPacket>(&lhs3[alignedStart-3]);
|
|---|
| 195 |
|
|---|
| 196 | for (; j<peeledSize; j+=peels*ResPacketSize)
|
|---|
| 197 | {
|
|---|
| 198 | A11 = pload<LhsPacket>(&lhs1[j-1+LhsPacketSize]); palign<1>(A01,A11);
|
|---|
| 199 | A12 = pload<LhsPacket>(&lhs2[j-2+LhsPacketSize]); palign<2>(A02,A12);
|
|---|
| 200 | A13 = pload<LhsPacket>(&lhs3[j-3+LhsPacketSize]); palign<3>(A03,A13);
|
|---|
| 201 |
|
|---|
| 202 | A00 = pload<LhsPacket>(&lhs0[j]);
|
|---|
| 203 | A10 = pload<LhsPacket>(&lhs0[j+LhsPacketSize]);
|
|---|
| 204 | T0 = pcj.pmadd(A00, ptmp0, pload<ResPacket>(&res[j]));
|
|---|
| 205 | T1 = pcj.pmadd(A10, ptmp0, pload<ResPacket>(&res[j+ResPacketSize]));
|
|---|
| 206 |
|
|---|
| 207 | T0 = pcj.pmadd(A01, ptmp1, T0);
|
|---|
| 208 | A01 = pload<LhsPacket>(&lhs1[j-1+2*LhsPacketSize]); palign<1>(A11,A01);
|
|---|
| 209 | T0 = pcj.pmadd(A02, ptmp2, T0);
|
|---|
| 210 | A02 = pload<LhsPacket>(&lhs2[j-2+2*LhsPacketSize]); palign<2>(A12,A02);
|
|---|
| 211 | T0 = pcj.pmadd(A03, ptmp3, T0);
|
|---|
| 212 | pstore(&res[j],T0);
|
|---|
| 213 | A03 = pload<LhsPacket>(&lhs3[j-3+2*LhsPacketSize]); palign<3>(A13,A03);
|
|---|
| 214 | T1 = pcj.pmadd(A11, ptmp1, T1);
|
|---|
| 215 | T1 = pcj.pmadd(A12, ptmp2, T1);
|
|---|
| 216 | T1 = pcj.pmadd(A13, ptmp3, T1);
|
|---|
| 217 | pstore(&res[j+ResPacketSize],T1);
|
|---|
| 218 | }
|
|---|
| 219 | }
|
|---|
| 220 | for (; j<alignedSize; j+=ResPacketSize)
|
|---|
| 221 | _EIGEN_ACCUMULATE_PACKETS(d,du,du);
|
|---|
| 222 | break;
|
|---|
| 223 | }
|
|---|
| 224 | default:
|
|---|
| 225 | for (Index j = alignedStart; j<alignedSize; j+=ResPacketSize)
|
|---|
| 226 | _EIGEN_ACCUMULATE_PACKETS(du,du,du);
|
|---|
| 227 | break;
|
|---|
| 228 | }
|
|---|
| 229 | }
|
|---|
| 230 | } // end explicit vectorization
|
|---|
| 231 |
|
|---|
| 232 | /* process remaining coeffs (or all if there is no explicit vectorization) */
|
|---|
| 233 | for (Index j=alignedSize; j<size; ++j)
|
|---|
| 234 | {
|
|---|
| 235 | res[j] = cj.pmadd(lhs0[j], pfirst(ptmp0), res[j]);
|
|---|
| 236 | res[j] = cj.pmadd(lhs1[j], pfirst(ptmp1), res[j]);
|
|---|
| 237 | res[j] = cj.pmadd(lhs2[j], pfirst(ptmp2), res[j]);
|
|---|
| 238 | res[j] = cj.pmadd(lhs3[j], pfirst(ptmp3), res[j]);
|
|---|
| 239 | }
|
|---|
| 240 | }
|
|---|
| 241 |
|
|---|
| 242 | // process remaining first and last columns (at most columnsAtOnce-1)
|
|---|
| 243 | Index end = cols;
|
|---|
| 244 | Index start = columnBound;
|
|---|
| 245 | do
|
|---|
| 246 | {
|
|---|
| 247 | for (Index k=start; k<end; ++k)
|
|---|
| 248 | {
|
|---|
| 249 | RhsPacket ptmp0 = pset1<RhsPacket>(alpha*rhs[k*rhsIncr]);
|
|---|
| 250 | const LhsScalar* lhs0 = lhs + k*lhsStride;
|
|---|
| 251 |
|
|---|
| 252 | if (Vectorizable)
|
|---|
| 253 | {
|
|---|
| 254 | /* explicit vectorization */
|
|---|
| 255 | // process first unaligned result's coeffs
|
|---|
| 256 | for (Index j=0; j<alignedStart; ++j)
|
|---|
| 257 | res[j] += cj.pmul(lhs0[j], pfirst(ptmp0));
|
|---|
| 258 | // process aligned result's coeffs
|
|---|
| 259 | if ((size_t(lhs0+alignedStart)%sizeof(LhsPacket))==0)
|
|---|
| 260 | for (Index i = alignedStart;i<alignedSize;i+=ResPacketSize)
|
|---|
| 261 | pstore(&res[i], pcj.pmadd(pload<LhsPacket>(&lhs0[i]), ptmp0, pload<ResPacket>(&res[i])));
|
|---|
| 262 | else
|
|---|
| 263 | for (Index i = alignedStart;i<alignedSize;i+=ResPacketSize)
|
|---|
| 264 | pstore(&res[i], pcj.pmadd(ploadu<LhsPacket>(&lhs0[i]), ptmp0, pload<ResPacket>(&res[i])));
|
|---|
| 265 | }
|
|---|
| 266 |
|
|---|
| 267 | // process remaining scalars (or all if no explicit vectorization)
|
|---|
| 268 | for (Index i=alignedSize; i<size; ++i)
|
|---|
| 269 | res[i] += cj.pmul(lhs0[i], pfirst(ptmp0));
|
|---|
| 270 | }
|
|---|
| 271 | if (skipColumns)
|
|---|
| 272 | {
|
|---|
| 273 | start = 0;
|
|---|
| 274 | end = skipColumns;
|
|---|
| 275 | skipColumns = 0;
|
|---|
| 276 | }
|
|---|
| 277 | else
|
|---|
| 278 | break;
|
|---|
| 279 | } while(Vectorizable);
|
|---|
| 280 | #undef _EIGEN_ACCUMULATE_PACKETS
|
|---|
| 281 | }
|
|---|
| 282 |
|
|---|
| 283 | /* Optimized row-major matrix * vector product:
|
|---|
| 284 | * This algorithm processes 4 rows at onces that allows to both reduce
|
|---|
| 285 | * the number of load/stores of the result by a factor 4 and to reduce
|
|---|
| 286 | * the instruction dependency. Moreover, we know that all bands have the
|
|---|
| 287 | * same alignment pattern.
|
|---|
| 288 | *
|
|---|
| 289 | * Mixing type logic:
|
|---|
| 290 | * - alpha is always a complex (or converted to a complex)
|
|---|
| 291 | * - no vectorization
|
|---|
| 292 | */
|
|---|
| 293 | template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version>
|
|---|
| 294 | struct general_matrix_vector_product<Index,LhsScalar,RowMajor,ConjugateLhs,RhsScalar,ConjugateRhs,Version>
|
|---|
| 295 | {
|
|---|
| 296 | typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
|
|---|
| 297 |
|
|---|
| 298 | enum {
|
|---|
| 299 | Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable
|
|---|
| 300 | && int(packet_traits<LhsScalar>::size)==int(packet_traits<RhsScalar>::size),
|
|---|
| 301 | LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
|
|---|
| 302 | RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
|
|---|
| 303 | ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1
|
|---|
| 304 | };
|
|---|
| 305 |
|
|---|
| 306 | typedef typename packet_traits<LhsScalar>::type _LhsPacket;
|
|---|
| 307 | typedef typename packet_traits<RhsScalar>::type _RhsPacket;
|
|---|
| 308 | typedef typename packet_traits<ResScalar>::type _ResPacket;
|
|---|
| 309 |
|
|---|
| 310 | typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
|
|---|
| 311 | typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
|
|---|
| 312 | typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
|
|---|
| 313 |
|
|---|
| 314 | EIGEN_DONT_INLINE static void run(
|
|---|
| 315 | Index rows, Index cols,
|
|---|
| 316 | const LhsScalar* lhs, Index lhsStride,
|
|---|
| 317 | const RhsScalar* rhs, Index rhsIncr,
|
|---|
| 318 | ResScalar* res, Index resIncr,
|
|---|
| 319 | ResScalar alpha);
|
|---|
| 320 | };
|
|---|
| 321 |
|
|---|
| 322 | template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version>
|
|---|
| 323 | EIGEN_DONT_INLINE void general_matrix_vector_product<Index,LhsScalar,RowMajor,ConjugateLhs,RhsScalar,ConjugateRhs,Version>::run(
|
|---|
| 324 | Index rows, Index cols,
|
|---|
| 325 | const LhsScalar* lhs, Index lhsStride,
|
|---|
| 326 | const RhsScalar* rhs, Index rhsIncr,
|
|---|
| 327 | ResScalar* res, Index resIncr,
|
|---|
| 328 | ResScalar alpha)
|
|---|
| 329 | {
|
|---|
| 330 | EIGEN_UNUSED_VARIABLE(rhsIncr);
|
|---|
| 331 | eigen_internal_assert(rhsIncr==1);
|
|---|
| 332 | #ifdef _EIGEN_ACCUMULATE_PACKETS
|
|---|
| 333 | #error _EIGEN_ACCUMULATE_PACKETS has already been defined
|
|---|
| 334 | #endif
|
|---|
| 335 |
|
|---|
| 336 | #define _EIGEN_ACCUMULATE_PACKETS(A0,A13,A2) {\
|
|---|
| 337 | RhsPacket b = pload<RhsPacket>(&rhs[j]); \
|
|---|
| 338 | ptmp0 = pcj.pmadd(EIGEN_CAT(ploa,A0) <LhsPacket>(&lhs0[j]), b, ptmp0); \
|
|---|
| 339 | ptmp1 = pcj.pmadd(EIGEN_CAT(ploa,A13)<LhsPacket>(&lhs1[j]), b, ptmp1); \
|
|---|
| 340 | ptmp2 = pcj.pmadd(EIGEN_CAT(ploa,A2) <LhsPacket>(&lhs2[j]), b, ptmp2); \
|
|---|
| 341 | ptmp3 = pcj.pmadd(EIGEN_CAT(ploa,A13)<LhsPacket>(&lhs3[j]), b, ptmp3); }
|
|---|
| 342 |
|
|---|
| 343 | conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
|
|---|
| 344 | conj_helper<LhsPacket,RhsPacket,ConjugateLhs,ConjugateRhs> pcj;
|
|---|
| 345 |
|
|---|
| 346 | enum { AllAligned=0, EvenAligned=1, FirstAligned=2, NoneAligned=3 };
|
|---|
| 347 | const Index rowsAtOnce = 4;
|
|---|
| 348 | const Index peels = 2;
|
|---|
| 349 | const Index RhsPacketAlignedMask = RhsPacketSize-1;
|
|---|
| 350 | const Index LhsPacketAlignedMask = LhsPacketSize-1;
|
|---|
| 351 | // const Index PeelAlignedMask = RhsPacketSize*peels-1;
|
|---|
| 352 | const Index depth = cols;
|
|---|
| 353 |
|
|---|
| 354 | // How many coeffs of the result do we have to skip to be aligned.
|
|---|
| 355 | // Here we assume data are at least aligned on the base scalar type
|
|---|
| 356 | // if that's not the case then vectorization is discarded, see below.
|
|---|
| 357 | Index alignedStart = internal::first_aligned(rhs, depth);
|
|---|
| 358 | Index alignedSize = RhsPacketSize>1 ? alignedStart + ((depth-alignedStart) & ~RhsPacketAlignedMask) : 0;
|
|---|
| 359 | const Index peeledSize = alignedSize - RhsPacketSize*peels - RhsPacketSize + 1;
|
|---|
| 360 |
|
|---|
| 361 | const Index alignmentStep = LhsPacketSize>1 ? (LhsPacketSize - lhsStride % LhsPacketSize) & LhsPacketAlignedMask : 0;
|
|---|
| 362 | Index alignmentPattern = alignmentStep==0 ? AllAligned
|
|---|
| 363 | : alignmentStep==(LhsPacketSize/2) ? EvenAligned
|
|---|
| 364 | : FirstAligned;
|
|---|
| 365 |
|
|---|
| 366 | // we cannot assume the first element is aligned because of sub-matrices
|
|---|
| 367 | const Index lhsAlignmentOffset = internal::first_aligned(lhs,depth);
|
|---|
| 368 |
|
|---|
| 369 | // find how many rows do we have to skip to be aligned with rhs (if possible)
|
|---|
| 370 | Index skipRows = 0;
|
|---|
| 371 | // if the data cannot be aligned (TODO add some compile time tests when possible, e.g. for floats)
|
|---|
| 372 | if( (sizeof(LhsScalar)!=sizeof(RhsScalar)) || (size_t(lhs)%sizeof(LhsScalar)) || (size_t(rhs)%sizeof(RhsScalar)) )
|
|---|
| 373 | {
|
|---|
| 374 | alignedSize = 0;
|
|---|
| 375 | alignedStart = 0;
|
|---|
| 376 | }
|
|---|
| 377 | else if (LhsPacketSize>1)
|
|---|
| 378 | {
|
|---|
| 379 | eigen_internal_assert(size_t(lhs+lhsAlignmentOffset)%sizeof(LhsPacket)==0 || depth<LhsPacketSize);
|
|---|
| 380 |
|
|---|
| 381 | while (skipRows<LhsPacketSize &&
|
|---|
| 382 | alignedStart != ((lhsAlignmentOffset + alignmentStep*skipRows)%LhsPacketSize))
|
|---|
| 383 | ++skipRows;
|
|---|
| 384 | if (skipRows==LhsPacketSize)
|
|---|
| 385 | {
|
|---|
| 386 | // nothing can be aligned, no need to skip any column
|
|---|
| 387 | alignmentPattern = NoneAligned;
|
|---|
| 388 | skipRows = 0;
|
|---|
| 389 | }
|
|---|
| 390 | else
|
|---|
| 391 | {
|
|---|
| 392 | skipRows = (std::min)(skipRows,Index(rows));
|
|---|
| 393 | // note that the skiped columns are processed later.
|
|---|
| 394 | }
|
|---|
| 395 | eigen_internal_assert( alignmentPattern==NoneAligned
|
|---|
| 396 | || LhsPacketSize==1
|
|---|
| 397 | || (skipRows + rowsAtOnce >= rows)
|
|---|
| 398 | || LhsPacketSize > depth
|
|---|
| 399 | || (size_t(lhs+alignedStart+lhsStride*skipRows)%sizeof(LhsPacket))==0);
|
|---|
| 400 | }
|
|---|
| 401 | else if(Vectorizable)
|
|---|
| 402 | {
|
|---|
| 403 | alignedStart = 0;
|
|---|
| 404 | alignedSize = depth;
|
|---|
| 405 | alignmentPattern = AllAligned;
|
|---|
| 406 | }
|
|---|
| 407 |
|
|---|
| 408 | Index offset1 = (FirstAligned && alignmentStep==1?3:1);
|
|---|
| 409 | Index offset3 = (FirstAligned && alignmentStep==1?1:3);
|
|---|
| 410 |
|
|---|
| 411 | Index rowBound = ((rows-skipRows)/rowsAtOnce)*rowsAtOnce + skipRows;
|
|---|
| 412 | for (Index i=skipRows; i<rowBound; i+=rowsAtOnce)
|
|---|
| 413 | {
|
|---|
| 414 | EIGEN_ALIGN16 ResScalar tmp0 = ResScalar(0);
|
|---|
| 415 | ResScalar tmp1 = ResScalar(0), tmp2 = ResScalar(0), tmp3 = ResScalar(0);
|
|---|
| 416 |
|
|---|
| 417 | // this helps the compiler generating good binary code
|
|---|
| 418 | const LhsScalar *lhs0 = lhs + i*lhsStride, *lhs1 = lhs + (i+offset1)*lhsStride,
|
|---|
| 419 | *lhs2 = lhs + (i+2)*lhsStride, *lhs3 = lhs + (i+offset3)*lhsStride;
|
|---|
| 420 |
|
|---|
| 421 | if (Vectorizable)
|
|---|
| 422 | {
|
|---|
| 423 | /* explicit vectorization */
|
|---|
| 424 | ResPacket ptmp0 = pset1<ResPacket>(ResScalar(0)), ptmp1 = pset1<ResPacket>(ResScalar(0)),
|
|---|
| 425 | ptmp2 = pset1<ResPacket>(ResScalar(0)), ptmp3 = pset1<ResPacket>(ResScalar(0));
|
|---|
| 426 |
|
|---|
| 427 | // process initial unaligned coeffs
|
|---|
| 428 | // FIXME this loop get vectorized by the compiler !
|
|---|
| 429 | for (Index j=0; j<alignedStart; ++j)
|
|---|
| 430 | {
|
|---|
| 431 | RhsScalar b = rhs[j];
|
|---|
| 432 | tmp0 += cj.pmul(lhs0[j],b); tmp1 += cj.pmul(lhs1[j],b);
|
|---|
| 433 | tmp2 += cj.pmul(lhs2[j],b); tmp3 += cj.pmul(lhs3[j],b);
|
|---|
| 434 | }
|
|---|
| 435 |
|
|---|
| 436 | if (alignedSize>alignedStart)
|
|---|
| 437 | {
|
|---|
| 438 | switch(alignmentPattern)
|
|---|
| 439 | {
|
|---|
| 440 | case AllAligned:
|
|---|
| 441 | for (Index j = alignedStart; j<alignedSize; j+=RhsPacketSize)
|
|---|
| 442 | _EIGEN_ACCUMULATE_PACKETS(d,d,d);
|
|---|
| 443 | break;
|
|---|
| 444 | case EvenAligned:
|
|---|
| 445 | for (Index j = alignedStart; j<alignedSize; j+=RhsPacketSize)
|
|---|
| 446 | _EIGEN_ACCUMULATE_PACKETS(d,du,d);
|
|---|
| 447 | break;
|
|---|
| 448 | case FirstAligned:
|
|---|
| 449 | {
|
|---|
| 450 | Index j = alignedStart;
|
|---|
| 451 | if (peels>1)
|
|---|
| 452 | {
|
|---|
| 453 | /* Here we proccess 4 rows with with two peeled iterations to hide
|
|---|
| 454 | * the overhead of unaligned loads. Moreover unaligned loads are handled
|
|---|
| 455 | * using special shift/move operations between the two aligned packets
|
|---|
| 456 | * overlaping the desired unaligned packet. This is *much* more efficient
|
|---|
| 457 | * than basic unaligned loads.
|
|---|
| 458 | */
|
|---|
| 459 | LhsPacket A01, A02, A03, A11, A12, A13;
|
|---|
| 460 | A01 = pload<LhsPacket>(&lhs1[alignedStart-1]);
|
|---|
| 461 | A02 = pload<LhsPacket>(&lhs2[alignedStart-2]);
|
|---|
| 462 | A03 = pload<LhsPacket>(&lhs3[alignedStart-3]);
|
|---|
| 463 |
|
|---|
| 464 | for (; j<peeledSize; j+=peels*RhsPacketSize)
|
|---|
| 465 | {
|
|---|
| 466 | RhsPacket b = pload<RhsPacket>(&rhs[j]);
|
|---|
| 467 | A11 = pload<LhsPacket>(&lhs1[j-1+LhsPacketSize]); palign<1>(A01,A11);
|
|---|
| 468 | A12 = pload<LhsPacket>(&lhs2[j-2+LhsPacketSize]); palign<2>(A02,A12);
|
|---|
| 469 | A13 = pload<LhsPacket>(&lhs3[j-3+LhsPacketSize]); palign<3>(A03,A13);
|
|---|
| 470 |
|
|---|
| 471 | ptmp0 = pcj.pmadd(pload<LhsPacket>(&lhs0[j]), b, ptmp0);
|
|---|
| 472 | ptmp1 = pcj.pmadd(A01, b, ptmp1);
|
|---|
| 473 | A01 = pload<LhsPacket>(&lhs1[j-1+2*LhsPacketSize]); palign<1>(A11,A01);
|
|---|
| 474 | ptmp2 = pcj.pmadd(A02, b, ptmp2);
|
|---|
| 475 | A02 = pload<LhsPacket>(&lhs2[j-2+2*LhsPacketSize]); palign<2>(A12,A02);
|
|---|
| 476 | ptmp3 = pcj.pmadd(A03, b, ptmp3);
|
|---|
| 477 | A03 = pload<LhsPacket>(&lhs3[j-3+2*LhsPacketSize]); palign<3>(A13,A03);
|
|---|
| 478 |
|
|---|
| 479 | b = pload<RhsPacket>(&rhs[j+RhsPacketSize]);
|
|---|
| 480 | ptmp0 = pcj.pmadd(pload<LhsPacket>(&lhs0[j+LhsPacketSize]), b, ptmp0);
|
|---|
| 481 | ptmp1 = pcj.pmadd(A11, b, ptmp1);
|
|---|
| 482 | ptmp2 = pcj.pmadd(A12, b, ptmp2);
|
|---|
| 483 | ptmp3 = pcj.pmadd(A13, b, ptmp3);
|
|---|
| 484 | }
|
|---|
| 485 | }
|
|---|
| 486 | for (; j<alignedSize; j+=RhsPacketSize)
|
|---|
| 487 | _EIGEN_ACCUMULATE_PACKETS(d,du,du);
|
|---|
| 488 | break;
|
|---|
| 489 | }
|
|---|
| 490 | default:
|
|---|
| 491 | for (Index j = alignedStart; j<alignedSize; j+=RhsPacketSize)
|
|---|
| 492 | _EIGEN_ACCUMULATE_PACKETS(du,du,du);
|
|---|
| 493 | break;
|
|---|
| 494 | }
|
|---|
| 495 | tmp0 += predux(ptmp0);
|
|---|
| 496 | tmp1 += predux(ptmp1);
|
|---|
| 497 | tmp2 += predux(ptmp2);
|
|---|
| 498 | tmp3 += predux(ptmp3);
|
|---|
| 499 | }
|
|---|
| 500 | } // end explicit vectorization
|
|---|
| 501 |
|
|---|
| 502 | // process remaining coeffs (or all if no explicit vectorization)
|
|---|
| 503 | // FIXME this loop get vectorized by the compiler !
|
|---|
| 504 | for (Index j=alignedSize; j<depth; ++j)
|
|---|
| 505 | {
|
|---|
| 506 | RhsScalar b = rhs[j];
|
|---|
| 507 | tmp0 += cj.pmul(lhs0[j],b); tmp1 += cj.pmul(lhs1[j],b);
|
|---|
| 508 | tmp2 += cj.pmul(lhs2[j],b); tmp3 += cj.pmul(lhs3[j],b);
|
|---|
| 509 | }
|
|---|
| 510 | res[i*resIncr] += alpha*tmp0;
|
|---|
| 511 | res[(i+offset1)*resIncr] += alpha*tmp1;
|
|---|
| 512 | res[(i+2)*resIncr] += alpha*tmp2;
|
|---|
| 513 | res[(i+offset3)*resIncr] += alpha*tmp3;
|
|---|
| 514 | }
|
|---|
| 515 |
|
|---|
| 516 | // process remaining first and last rows (at most columnsAtOnce-1)
|
|---|
| 517 | Index end = rows;
|
|---|
| 518 | Index start = rowBound;
|
|---|
| 519 | do
|
|---|
| 520 | {
|
|---|
| 521 | for (Index i=start; i<end; ++i)
|
|---|
| 522 | {
|
|---|
| 523 | EIGEN_ALIGN16 ResScalar tmp0 = ResScalar(0);
|
|---|
| 524 | ResPacket ptmp0 = pset1<ResPacket>(tmp0);
|
|---|
| 525 | const LhsScalar* lhs0 = lhs + i*lhsStride;
|
|---|
| 526 | // process first unaligned result's coeffs
|
|---|
| 527 | // FIXME this loop get vectorized by the compiler !
|
|---|
| 528 | for (Index j=0; j<alignedStart; ++j)
|
|---|
| 529 | tmp0 += cj.pmul(lhs0[j], rhs[j]);
|
|---|
| 530 |
|
|---|
| 531 | if (alignedSize>alignedStart)
|
|---|
| 532 | {
|
|---|
| 533 | // process aligned rhs coeffs
|
|---|
| 534 | if ((size_t(lhs0+alignedStart)%sizeof(LhsPacket))==0)
|
|---|
| 535 | for (Index j = alignedStart;j<alignedSize;j+=RhsPacketSize)
|
|---|
| 536 | ptmp0 = pcj.pmadd(pload<LhsPacket>(&lhs0[j]), pload<RhsPacket>(&rhs[j]), ptmp0);
|
|---|
| 537 | else
|
|---|
| 538 | for (Index j = alignedStart;j<alignedSize;j+=RhsPacketSize)
|
|---|
| 539 | ptmp0 = pcj.pmadd(ploadu<LhsPacket>(&lhs0[j]), pload<RhsPacket>(&rhs[j]), ptmp0);
|
|---|
| 540 | tmp0 += predux(ptmp0);
|
|---|
| 541 | }
|
|---|
| 542 |
|
|---|
| 543 | // process remaining scalars
|
|---|
| 544 | // FIXME this loop get vectorized by the compiler !
|
|---|
| 545 | for (Index j=alignedSize; j<depth; ++j)
|
|---|
| 546 | tmp0 += cj.pmul(lhs0[j], rhs[j]);
|
|---|
| 547 | res[i*resIncr] += alpha*tmp0;
|
|---|
| 548 | }
|
|---|
| 549 | if (skipRows)
|
|---|
| 550 | {
|
|---|
| 551 | start = 0;
|
|---|
| 552 | end = skipRows;
|
|---|
| 553 | skipRows = 0;
|
|---|
| 554 | }
|
|---|
| 555 | else
|
|---|
| 556 | break;
|
|---|
| 557 | } while(Vectorizable);
|
|---|
| 558 |
|
|---|
| 559 | #undef _EIGEN_ACCUMULATE_PACKETS
|
|---|
| 560 | }
|
|---|
| 561 |
|
|---|
| 562 | } // end namespace internal
|
|---|
| 563 |
|
|---|
| 564 | } // end namespace Eigen
|
|---|
| 565 |
|
|---|
| 566 | #endif // EIGEN_GENERAL_MATRIX_VECTOR_H
|
|---|