source: pacpussensors/trunk/Vislab/lib3dv/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h@ 136

Last change on this file since 136 was 136, checked in by ldecherf, 7 years ago

Doc

File size: 13.7 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_TRIANGULAR_SOLVER_MATRIX_H
11#define EIGEN_TRIANGULAR_SOLVER_MATRIX_H
12
13namespace Eigen {
14
15namespace internal {
16
17// if the rhs is row major, let's transpose the product
18template <typename Scalar, typename Index, int Side, int Mode, bool Conjugate, int TriStorageOrder>
19struct triangular_solve_matrix<Scalar,Index,Side,Mode,Conjugate,TriStorageOrder,RowMajor>
20{
21 static void run(
22 Index size, Index cols,
23 const Scalar* tri, Index triStride,
24 Scalar* _other, Index otherStride,
25 level3_blocking<Scalar,Scalar>& blocking)
26 {
27 triangular_solve_matrix<
28 Scalar, Index, Side==OnTheLeft?OnTheRight:OnTheLeft,
29 (Mode&UnitDiag) | ((Mode&Upper) ? Lower : Upper),
30 NumTraits<Scalar>::IsComplex && Conjugate,
31 TriStorageOrder==RowMajor ? ColMajor : RowMajor, ColMajor>
32 ::run(size, cols, tri, triStride, _other, otherStride, blocking);
33 }
34};
35
36/* Optimized triangular solver with multiple right hand side and the triangular matrix on the left
37 */
38template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
39struct triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conjugate,TriStorageOrder,ColMajor>
40{
41 static EIGEN_DONT_INLINE void run(
42 Index size, Index otherSize,
43 const Scalar* _tri, Index triStride,
44 Scalar* _other, Index otherStride,
45 level3_blocking<Scalar,Scalar>& blocking);
46};
47template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
48EIGEN_DONT_INLINE void triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conjugate,TriStorageOrder,ColMajor>::run(
49 Index size, Index otherSize,
50 const Scalar* _tri, Index triStride,
51 Scalar* _other, Index otherStride,
52 level3_blocking<Scalar,Scalar>& blocking)
53 {
54 Index cols = otherSize;
55 const_blas_data_mapper<Scalar, Index, TriStorageOrder> tri(_tri,triStride);
56 blas_data_mapper<Scalar, Index, ColMajor> other(_other,otherStride);
57
58 typedef gebp_traits<Scalar,Scalar> Traits;
59 enum {
60 SmallPanelWidth = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
61 IsLower = (Mode&Lower) == Lower
62 };
63
64 Index kc = blocking.kc(); // cache block size along the K direction
65 Index mc = (std::min)(size,blocking.mc()); // cache block size along the M direction
66
67 std::size_t sizeA = kc*mc;
68 std::size_t sizeB = kc*cols;
69 std::size_t sizeW = kc*Traits::WorkSpaceFactor;
70
71 ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
72 ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
73 ei_declare_aligned_stack_constructed_variable(Scalar, blockW, sizeW, blocking.blockW());
74
75 conj_if<Conjugate> conj;
76 gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, Conjugate, false> gebp_kernel;
77 gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, TriStorageOrder> pack_lhs;
78 gemm_pack_rhs<Scalar, Index, Traits::nr, ColMajor, false, true> pack_rhs;
79
80 // the goal here is to subdivise the Rhs panels such that we keep some cache
81 // coherence when accessing the rhs elements
82 std::ptrdiff_t l1, l2;
83 manage_caching_sizes(GetAction, &l1, &l2);
84 Index subcols = cols>0 ? l2/(4 * sizeof(Scalar) * std::max<Index>(otherStride,size)) : 0;
85 subcols = std::max<Index>((subcols/Traits::nr)*Traits::nr, Traits::nr);
86
87 for(Index k2=IsLower ? 0 : size;
88 IsLower ? k2<size : k2>0;
89 IsLower ? k2+=kc : k2-=kc)
90 {
91 const Index actual_kc = (std::min)(IsLower ? size-k2 : k2, kc);
92
93 // We have selected and packed a big horizontal panel R1 of rhs. Let B be the packed copy of this panel,
94 // and R2 the remaining part of rhs. The corresponding vertical panel of lhs is split into
95 // A11 (the triangular part) and A21 the remaining rectangular part.
96 // Then the high level algorithm is:
97 // - B = R1 => general block copy (done during the next step)
98 // - R1 = A11^-1 B => tricky part
99 // - update B from the new R1 => actually this has to be performed continuously during the above step
100 // - R2 -= A21 * B => GEPP
101
102 // The tricky part: compute R1 = A11^-1 B while updating B from R1
103 // The idea is to split A11 into multiple small vertical panels.
104 // Each panel can be split into a small triangular part T1k which is processed without optimization,
105 // and the remaining small part T2k which is processed using gebp with appropriate block strides
106 for(Index j2=0; j2<cols; j2+=subcols)
107 {
108 Index actual_cols = (std::min)(cols-j2,subcols);
109 // for each small vertical panels [T1k^T, T2k^T]^T of lhs
110 for (Index k1=0; k1<actual_kc; k1+=SmallPanelWidth)
111 {
112 Index actualPanelWidth = std::min<Index>(actual_kc-k1, SmallPanelWidth);
113 // tr solve
114 for (Index k=0; k<actualPanelWidth; ++k)
115 {
116 // TODO write a small kernel handling this (can be shared with trsv)
117 Index i = IsLower ? k2+k1+k : k2-k1-k-1;
118 Index rs = actualPanelWidth - k - 1; // remaining size
119 Index s = TriStorageOrder==RowMajor ? (IsLower ? k2+k1 : i+1)
120 : IsLower ? i+1 : i-rs;
121
122 Scalar a = (Mode & UnitDiag) ? Scalar(1) : Scalar(1)/conj(tri(i,i));
123 for (Index j=j2; j<j2+actual_cols; ++j)
124 {
125 if (TriStorageOrder==RowMajor)
126 {
127 Scalar b(0);
128 const Scalar* l = &tri(i,s);
129 Scalar* r = &other(s,j);
130 for (Index i3=0; i3<k; ++i3)
131 b += conj(l[i3]) * r[i3];
132
133 other(i,j) = (other(i,j) - b)*a;
134 }
135 else
136 {
137 Scalar b = (other(i,j) *= a);
138 Scalar* r = &other(s,j);
139 const Scalar* l = &tri(s,i);
140 for (Index i3=0;i3<rs;++i3)
141 r[i3] -= b * conj(l[i3]);
142 }
143 }
144 }
145
146 Index lengthTarget = actual_kc-k1-actualPanelWidth;
147 Index startBlock = IsLower ? k2+k1 : k2-k1-actualPanelWidth;
148 Index blockBOffset = IsLower ? k1 : lengthTarget;
149
150 // update the respective rows of B from other
151 pack_rhs(blockB+actual_kc*j2, &other(startBlock,j2), otherStride, actualPanelWidth, actual_cols, actual_kc, blockBOffset);
152
153 // GEBP
154 if (lengthTarget>0)
155 {
156 Index startTarget = IsLower ? k2+k1+actualPanelWidth : k2-actual_kc;
157
158 pack_lhs(blockA, &tri(startTarget,startBlock), triStride, actualPanelWidth, lengthTarget);
159
160 gebp_kernel(&other(startTarget,j2), otherStride, blockA, blockB+actual_kc*j2, lengthTarget, actualPanelWidth, actual_cols, Scalar(-1),
161 actualPanelWidth, actual_kc, 0, blockBOffset, blockW);
162 }
163 }
164 }
165
166 // R2 -= A21 * B => GEPP
167 {
168 Index start = IsLower ? k2+kc : 0;
169 Index end = IsLower ? size : k2-kc;
170 for(Index i2=start; i2<end; i2+=mc)
171 {
172 const Index actual_mc = (std::min)(mc,end-i2);
173 if (actual_mc>0)
174 {
175 pack_lhs(blockA, &tri(i2, IsLower ? k2 : k2-kc), triStride, actual_kc, actual_mc);
176
177 gebp_kernel(_other+i2, otherStride, blockA, blockB, actual_mc, actual_kc, cols, Scalar(-1), -1, -1, 0, 0, blockW);
178 }
179 }
180 }
181 }
182 }
183
184/* Optimized triangular solver with multiple left hand sides and the trinagular matrix on the right
185 */
186template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
187struct triangular_solve_matrix<Scalar,Index,OnTheRight,Mode,Conjugate,TriStorageOrder,ColMajor>
188{
189 static EIGEN_DONT_INLINE void run(
190 Index size, Index otherSize,
191 const Scalar* _tri, Index triStride,
192 Scalar* _other, Index otherStride,
193 level3_blocking<Scalar,Scalar>& blocking);
194};
195template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
196EIGEN_DONT_INLINE void triangular_solve_matrix<Scalar,Index,OnTheRight,Mode,Conjugate,TriStorageOrder,ColMajor>::run(
197 Index size, Index otherSize,
198 const Scalar* _tri, Index triStride,
199 Scalar* _other, Index otherStride,
200 level3_blocking<Scalar,Scalar>& blocking)
201 {
202 Index rows = otherSize;
203 const_blas_data_mapper<Scalar, Index, TriStorageOrder> rhs(_tri,triStride);
204 blas_data_mapper<Scalar, Index, ColMajor> lhs(_other,otherStride);
205
206 typedef gebp_traits<Scalar,Scalar> Traits;
207 enum {
208 RhsStorageOrder = TriStorageOrder,
209 SmallPanelWidth = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
210 IsLower = (Mode&Lower) == Lower
211 };
212
213 Index kc = blocking.kc(); // cache block size along the K direction
214 Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction
215
216 std::size_t sizeA = kc*mc;
217 std::size_t sizeB = kc*size;
218 std::size_t sizeW = kc*Traits::WorkSpaceFactor;
219
220 ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
221 ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
222 ei_declare_aligned_stack_constructed_variable(Scalar, blockW, sizeW, blocking.blockW());
223
224 conj_if<Conjugate> conj;
225 gebp_kernel<Scalar,Scalar, Index, Traits::mr, Traits::nr, false, Conjugate> gebp_kernel;
226 gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
227 gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder,false,true> pack_rhs_panel;
228 gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, ColMajor, false, true> pack_lhs_panel;
229
230 for(Index k2=IsLower ? size : 0;
231 IsLower ? k2>0 : k2<size;
232 IsLower ? k2-=kc : k2+=kc)
233 {
234 const Index actual_kc = (std::min)(IsLower ? k2 : size-k2, kc);
235 Index actual_k2 = IsLower ? k2-actual_kc : k2 ;
236
237 Index startPanel = IsLower ? 0 : k2+actual_kc;
238 Index rs = IsLower ? actual_k2 : size - actual_k2 - actual_kc;
239 Scalar* geb = blockB+actual_kc*actual_kc;
240
241 if (rs>0) pack_rhs(geb, &rhs(actual_k2,startPanel), triStride, actual_kc, rs);
242
243 // triangular packing (we only pack the panels off the diagonal,
244 // neglecting the blocks overlapping the diagonal
245 {
246 for (Index j2=0; j2<actual_kc; j2+=SmallPanelWidth)
247 {
248 Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
249 Index actual_j2 = actual_k2 + j2;
250 Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
251 Index panelLength = IsLower ? actual_kc-j2-actualPanelWidth : j2;
252
253 if (panelLength>0)
254 pack_rhs_panel(blockB+j2*actual_kc,
255 &rhs(actual_k2+panelOffset, actual_j2), triStride,
256 panelLength, actualPanelWidth,
257 actual_kc, panelOffset);
258 }
259 }
260
261 for(Index i2=0; i2<rows; i2+=mc)
262 {
263 const Index actual_mc = (std::min)(mc,rows-i2);
264
265 // triangular solver kernel
266 {
267 // for each small block of the diagonal (=> vertical panels of rhs)
268 for (Index j2 = IsLower
269 ? (actual_kc - ((actual_kc%SmallPanelWidth) ? Index(actual_kc%SmallPanelWidth)
270 : Index(SmallPanelWidth)))
271 : 0;
272 IsLower ? j2>=0 : j2<actual_kc;
273 IsLower ? j2-=SmallPanelWidth : j2+=SmallPanelWidth)
274 {
275 Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
276 Index absolute_j2 = actual_k2 + j2;
277 Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
278 Index panelLength = IsLower ? actual_kc - j2 - actualPanelWidth : j2;
279
280 // GEBP
281 if(panelLength>0)
282 {
283 gebp_kernel(&lhs(i2,absolute_j2), otherStride,
284 blockA, blockB+j2*actual_kc,
285 actual_mc, panelLength, actualPanelWidth,
286 Scalar(-1),
287 actual_kc, actual_kc, // strides
288 panelOffset, panelOffset, // offsets
289 blockW); // workspace
290 }
291
292 // unblocked triangular solve
293 for (Index k=0; k<actualPanelWidth; ++k)
294 {
295 Index j = IsLower ? absolute_j2+actualPanelWidth-k-1 : absolute_j2+k;
296
297 Scalar* r = &lhs(i2,j);
298 for (Index k3=0; k3<k; ++k3)
299 {
300 Scalar b = conj(rhs(IsLower ? j+1+k3 : absolute_j2+k3,j));
301 Scalar* a = &lhs(i2,IsLower ? j+1+k3 : absolute_j2+k3);
302 for (Index i=0; i<actual_mc; ++i)
303 r[i] -= a[i] * b;
304 }
305 if((Mode & UnitDiag)==0)
306 {
307 Scalar b = conj(rhs(j,j));
308 for (Index i=0; i<actual_mc; ++i)
309 r[i] /= b;
310 }
311 }
312
313 // pack the just computed part of lhs to A
314 pack_lhs_panel(blockA, _other+absolute_j2*otherStride+i2, otherStride,
315 actualPanelWidth, actual_mc,
316 actual_kc, j2);
317 }
318 }
319
320 if (rs>0)
321 gebp_kernel(_other+i2+startPanel*otherStride, otherStride, blockA, geb,
322 actual_mc, actual_kc, rs, Scalar(-1),
323 -1, -1, 0, 0, blockW);
324 }
325 }
326 }
327
328} // end namespace internal
329
330} // end namespace Eigen
331
332#endif // EIGEN_TRIANGULAR_SOLVER_MATRIX_H
Note: See TracBrowser for help on using the repository browser.