source: pacpussensors/trunk/Vislab/lib3dv/eigen/Eigen/src/Core/util/Memory.h@ 136

Last change on this file since 136 was 136, checked in by ldecherf, 7 years ago

Doc

File size: 37.2 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6// Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
7// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
8// Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
9//
10// This Source Code Form is subject to the terms of the Mozilla
11// Public License v. 2.0. If a copy of the MPL was not distributed
12// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
13
14
15/*****************************************************************************
16*** Platform checks for aligned malloc functions ***
17*****************************************************************************/
18
19#ifndef EIGEN_MEMORY_H
20#define EIGEN_MEMORY_H
21
22#ifndef EIGEN_MALLOC_ALREADY_ALIGNED
23
24// Try to determine automatically if malloc is already aligned.
25
26// On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
27// http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
28// This is true at least since glibc 2.8.
29// This leaves the question how to detect 64-bit. According to this document,
30// http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
31// page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
32// quite safe, at least within the context of glibc, to equate 64-bit with LP64.
33#if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
34 && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ )
35 #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
36#else
37 #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
38#endif
39
40// FreeBSD 6 seems to have 16-byte aligned malloc
41// See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
42// FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
43// See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
44#if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__)
45 #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
46#else
47 #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
48#endif
49
50#if defined(__APPLE__) \
51 || defined(_WIN64) \
52 || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
53 || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
54 #define EIGEN_MALLOC_ALREADY_ALIGNED 1
55#else
56 #define EIGEN_MALLOC_ALREADY_ALIGNED 0
57#endif
58
59#endif
60
61// See bug 554 (http://eigen.tuxfamily.org/bz/show_bug.cgi?id=554)
62// It seems to be unsafe to check _POSIX_ADVISORY_INFO without including unistd.h first.
63// Currently, let's include it only on unix systems:
64#if defined(__unix__) || defined(__unix)
65 #include <unistd.h>
66 #if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || (defined __PGI) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
67 #define EIGEN_HAS_POSIX_MEMALIGN 1
68 #endif
69#endif
70
71#ifndef EIGEN_HAS_POSIX_MEMALIGN
72 #define EIGEN_HAS_POSIX_MEMALIGN 0
73#endif
74
75#ifdef EIGEN_VECTORIZE_SSE
76 #define EIGEN_HAS_MM_MALLOC 1
77#else
78 #define EIGEN_HAS_MM_MALLOC 0
79#endif
80
81namespace Eigen {
82
83namespace internal {
84
85inline void throw_std_bad_alloc()
86{
87 #ifdef EIGEN_EXCEPTIONS
88 throw std::bad_alloc();
89 #else
90 std::size_t huge = -1;
91 new int[huge];
92 #endif
93}
94
95/*****************************************************************************
96*** Implementation of handmade aligned functions ***
97*****************************************************************************/
98
99/* ----- Hand made implementations of aligned malloc/free and realloc ----- */
100
101/** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned.
102 * Fast, but wastes 16 additional bytes of memory. Does not throw any exception.
103 */
104inline void* handmade_aligned_malloc(std::size_t size)
105{
106 void *original = std::malloc(size+16);
107 if (original == 0) return 0;
108 void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(15))) + 16);
109 *(reinterpret_cast<void**>(aligned) - 1) = original;
110 return aligned;
111}
112
113/** \internal Frees memory allocated with handmade_aligned_malloc */
114inline void handmade_aligned_free(void *ptr)
115{
116 if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
117}
118
119/** \internal
120 * \brief Reallocates aligned memory.
121 * Since we know that our handmade version is based on std::realloc
122 * we can use std::realloc to implement efficient reallocation.
123 */
124inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0)
125{
126 if (ptr == 0) return handmade_aligned_malloc(size);
127 void *original = *(reinterpret_cast<void**>(ptr) - 1);
128 std::ptrdiff_t previous_offset = static_cast<char *>(ptr)-static_cast<char *>(original);
129 original = std::realloc(original,size+16);
130 if (original == 0) return 0;
131 void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(15))) + 16);
132 void *previous_aligned = static_cast<char *>(original)+previous_offset;
133 if(aligned!=previous_aligned)
134 std::memmove(aligned, previous_aligned, size);
135
136 *(reinterpret_cast<void**>(aligned) - 1) = original;
137 return aligned;
138}
139
140/*****************************************************************************
141*** Implementation of generic aligned realloc (when no realloc can be used)***
142*****************************************************************************/
143
144void* aligned_malloc(std::size_t size);
145void aligned_free(void *ptr);
146
147/** \internal
148 * \brief Reallocates aligned memory.
149 * Allows reallocation with aligned ptr types. This implementation will
150 * always create a new memory chunk and copy the old data.
151 */
152inline void* generic_aligned_realloc(void* ptr, size_t size, size_t old_size)
153{
154 if (ptr==0)
155 return aligned_malloc(size);
156
157 if (size==0)
158 {
159 aligned_free(ptr);
160 return 0;
161 }
162
163 void* newptr = aligned_malloc(size);
164 if (newptr == 0)
165 {
166 #ifdef EIGEN_HAS_ERRNO
167 errno = ENOMEM; // according to the standard
168 #endif
169 return 0;
170 }
171
172 if (ptr != 0)
173 {
174 std::memcpy(newptr, ptr, (std::min)(size,old_size));
175 aligned_free(ptr);
176 }
177
178 return newptr;
179}
180
181/*****************************************************************************
182*** Implementation of portable aligned versions of malloc/free/realloc ***
183*****************************************************************************/
184
185#ifdef EIGEN_NO_MALLOC
186inline void check_that_malloc_is_allowed()
187{
188 eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
189}
190#elif defined EIGEN_RUNTIME_NO_MALLOC
191inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
192{
193 static bool value = true;
194 if (update == 1)
195 value = new_value;
196 return value;
197}
198inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
199inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
200inline void check_that_malloc_is_allowed()
201{
202 eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
203}
204#else
205inline void check_that_malloc_is_allowed()
206{}
207#endif
208
209/** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 bytes alignment.
210 * On allocation error, the returned pointer is null, and std::bad_alloc is thrown.
211 */
212inline void* aligned_malloc(size_t size)
213{
214 check_that_malloc_is_allowed();
215
216 void *result;
217 #if !EIGEN_ALIGN
218 result = std::malloc(size);
219 #elif EIGEN_MALLOC_ALREADY_ALIGNED
220 result = std::malloc(size);
221 #elif EIGEN_HAS_POSIX_MEMALIGN
222 if(posix_memalign(&result, 16, size)) result = 0;
223 #elif EIGEN_HAS_MM_MALLOC
224 result = _mm_malloc(size, 16);
225 #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
226 result = _aligned_malloc(size, 16);
227 #else
228 result = handmade_aligned_malloc(size);
229 #endif
230
231 if(!result && size)
232 throw_std_bad_alloc();
233
234 return result;
235}
236
237/** \internal Frees memory allocated with aligned_malloc. */
238inline void aligned_free(void *ptr)
239{
240 #if !EIGEN_ALIGN
241 std::free(ptr);
242 #elif EIGEN_MALLOC_ALREADY_ALIGNED
243 std::free(ptr);
244 #elif EIGEN_HAS_POSIX_MEMALIGN
245 std::free(ptr);
246 #elif EIGEN_HAS_MM_MALLOC
247 _mm_free(ptr);
248 #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
249 _aligned_free(ptr);
250 #else
251 handmade_aligned_free(ptr);
252 #endif
253}
254
255/**
256* \internal
257* \brief Reallocates an aligned block of memory.
258* \throws std::bad_alloc on allocation failure
259**/
260inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size)
261{
262 EIGEN_UNUSED_VARIABLE(old_size);
263
264 void *result;
265#if !EIGEN_ALIGN
266 result = std::realloc(ptr,new_size);
267#elif EIGEN_MALLOC_ALREADY_ALIGNED
268 result = std::realloc(ptr,new_size);
269#elif EIGEN_HAS_POSIX_MEMALIGN
270 result = generic_aligned_realloc(ptr,new_size,old_size);
271#elif EIGEN_HAS_MM_MALLOC
272 // The defined(_mm_free) is just here to verify that this MSVC version
273 // implements _mm_malloc/_mm_free based on the corresponding _aligned_
274 // functions. This may not always be the case and we just try to be safe.
275 #if defined(_MSC_VER) && (!defined(_WIN32_WCE)) && defined(_mm_free)
276 result = _aligned_realloc(ptr,new_size,16);
277 #else
278 result = generic_aligned_realloc(ptr,new_size,old_size);
279 #endif
280#elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
281 result = _aligned_realloc(ptr,new_size,16);
282#else
283 result = handmade_aligned_realloc(ptr,new_size,old_size);
284#endif
285
286 if (!result && new_size)
287 throw_std_bad_alloc();
288
289 return result;
290}
291
292/*****************************************************************************
293*** Implementation of conditionally aligned functions ***
294*****************************************************************************/
295
296/** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned.
297 * On allocation error, the returned pointer is null, and a std::bad_alloc is thrown.
298 */
299template<bool Align> inline void* conditional_aligned_malloc(size_t size)
300{
301 return aligned_malloc(size);
302}
303
304template<> inline void* conditional_aligned_malloc<false>(size_t size)
305{
306 check_that_malloc_is_allowed();
307
308 void *result = std::malloc(size);
309 if(!result && size)
310 throw_std_bad_alloc();
311 return result;
312}
313
314/** \internal Frees memory allocated with conditional_aligned_malloc */
315template<bool Align> inline void conditional_aligned_free(void *ptr)
316{
317 aligned_free(ptr);
318}
319
320template<> inline void conditional_aligned_free<false>(void *ptr)
321{
322 std::free(ptr);
323}
324
325template<bool Align> inline void* conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size)
326{
327 return aligned_realloc(ptr, new_size, old_size);
328}
329
330template<> inline void* conditional_aligned_realloc<false>(void* ptr, size_t new_size, size_t)
331{
332 return std::realloc(ptr, new_size);
333}
334
335/*****************************************************************************
336*** Construction/destruction of array elements ***
337*****************************************************************************/
338
339/** \internal Constructs the elements of an array.
340 * The \a size parameter tells on how many objects to call the constructor of T.
341 */
342template<typename T> inline T* construct_elements_of_array(T *ptr, size_t size)
343{
344 for (size_t i=0; i < size; ++i) ::new (ptr + i) T;
345 return ptr;
346}
347
348/** \internal Destructs the elements of an array.
349 * The \a size parameters tells on how many objects to call the destructor of T.
350 */
351template<typename T> inline void destruct_elements_of_array(T *ptr, size_t size)
352{
353 // always destruct an array starting from the end.
354 if(ptr)
355 while(size) ptr[--size].~T();
356}
357
358/*****************************************************************************
359*** Implementation of aligned new/delete-like functions ***
360*****************************************************************************/
361
362template<typename T>
363EIGEN_ALWAYS_INLINE void check_size_for_overflow(size_t size)
364{
365 if(size > size_t(-1) / sizeof(T))
366 throw_std_bad_alloc();
367}
368
369/** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment.
370 * On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown.
371 * The default constructor of T is called.
372 */
373template<typename T> inline T* aligned_new(size_t size)
374{
375 check_size_for_overflow<T>(size);
376 T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
377 return construct_elements_of_array(result, size);
378}
379
380template<typename T, bool Align> inline T* conditional_aligned_new(size_t size)
381{
382 check_size_for_overflow<T>(size);
383 T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
384 return construct_elements_of_array(result, size);
385}
386
387/** \internal Deletes objects constructed with aligned_new
388 * The \a size parameters tells on how many objects to call the destructor of T.
389 */
390template<typename T> inline void aligned_delete(T *ptr, size_t size)
391{
392 destruct_elements_of_array<T>(ptr, size);
393 aligned_free(ptr);
394}
395
396/** \internal Deletes objects constructed with conditional_aligned_new
397 * The \a size parameters tells on how many objects to call the destructor of T.
398 */
399template<typename T, bool Align> inline void conditional_aligned_delete(T *ptr, size_t size)
400{
401 destruct_elements_of_array<T>(ptr, size);
402 conditional_aligned_free<Align>(ptr);
403}
404
405template<typename T, bool Align> inline T* conditional_aligned_realloc_new(T* pts, size_t new_size, size_t old_size)
406{
407 check_size_for_overflow<T>(new_size);
408 check_size_for_overflow<T>(old_size);
409 if(new_size < old_size)
410 destruct_elements_of_array(pts+new_size, old_size-new_size);
411 T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
412 if(new_size > old_size)
413 construct_elements_of_array(result+old_size, new_size-old_size);
414 return result;
415}
416
417
418template<typename T, bool Align> inline T* conditional_aligned_new_auto(size_t size)
419{
420 if(size==0)
421 return 0; // short-cut. Also fixes Bug 884
422 check_size_for_overflow<T>(size);
423 T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
424 if(NumTraits<T>::RequireInitialization)
425 construct_elements_of_array(result, size);
426 return result;
427}
428
429template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, size_t new_size, size_t old_size)
430{
431 check_size_for_overflow<T>(new_size);
432 check_size_for_overflow<T>(old_size);
433 if(NumTraits<T>::RequireInitialization && (new_size < old_size))
434 destruct_elements_of_array(pts+new_size, old_size-new_size);
435 T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
436 if(NumTraits<T>::RequireInitialization && (new_size > old_size))
437 construct_elements_of_array(result+old_size, new_size-old_size);
438 return result;
439}
440
441template<typename T, bool Align> inline void conditional_aligned_delete_auto(T *ptr, size_t size)
442{
443 if(NumTraits<T>::RequireInitialization)
444 destruct_elements_of_array<T>(ptr, size);
445 conditional_aligned_free<Align>(ptr);
446}
447
448/****************************************************************************/
449
450/** \internal Returns the index of the first element of the array that is well aligned for vectorization.
451 *
452 * \param array the address of the start of the array
453 * \param size the size of the array
454 *
455 * \note If no element of the array is well aligned, the size of the array is returned. Typically,
456 * for example with SSE, "well aligned" means 16-byte-aligned. If vectorization is disabled or if the
457 * packet size for the given scalar type is 1, then everything is considered well-aligned.
458 *
459 * \note If the scalar type is vectorizable, we rely on the following assumptions: sizeof(Scalar) is a
460 * power of 2, the packet size in bytes is also a power of 2, and is a multiple of sizeof(Scalar). On the
461 * other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for
462 * example with Scalar=double on certain 32-bit platforms, see bug #79.
463 *
464 * There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h.
465 */
466template<typename Scalar, typename Index>
467static inline Index first_aligned(const Scalar* array, Index size)
468{
469 static const Index PacketSize = packet_traits<Scalar>::size;
470 static const Index PacketAlignedMask = PacketSize-1;
471
472 if(PacketSize==1)
473 {
474 // Either there is no vectorization, or a packet consists of exactly 1 scalar so that all elements
475 // of the array have the same alignment.
476 return 0;
477 }
478 else if(size_t(array) & (sizeof(Scalar)-1))
479 {
480 // There is vectorization for this scalar type, but the array is not aligned to the size of a single scalar.
481 // Consequently, no element of the array is well aligned.
482 return size;
483 }
484 else
485 {
486 return std::min<Index>( (PacketSize - (Index((size_t(array)/sizeof(Scalar))) & PacketAlignedMask))
487 & PacketAlignedMask, size);
488 }
489}
490
491/** \internal Returns the smallest integer multiple of \a base and greater or equal to \a size
492 */
493template<typename Index>
494inline static Index first_multiple(Index size, Index base)
495{
496 return ((size+base-1)/base)*base;
497}
498
499// std::copy is much slower than memcpy, so let's introduce a smart_copy which
500// use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
501template<typename T, bool UseMemcpy> struct smart_copy_helper;
502
503template<typename T> void smart_copy(const T* start, const T* end, T* target)
504{
505 smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
506}
507
508template<typename T> struct smart_copy_helper<T,true> {
509 static inline void run(const T* start, const T* end, T* target)
510 {
511 std::ptrdiff_t size = std::ptrdiff_t(end)-std::ptrdiff_t(start);
512 if(size==0) return;
513 eigen_internal_assert(start!=0 && end!=0 && target!=0);
514 memcpy(target, start, size);
515 }
516};
517
518template<typename T> struct smart_copy_helper<T,false> {
519 static inline void run(const T* start, const T* end, T* target)
520 { std::copy(start, end, target); }
521};
522
523/*****************************************************************************
524*** Implementation of runtime stack allocation (falling back to malloc) ***
525*****************************************************************************/
526
527// you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
528// to the appropriate stack allocation function
529#ifndef EIGEN_ALLOCA
530 #if (defined __linux__) || (defined __APPLE__) || (defined alloca)
531 #define EIGEN_ALLOCA alloca
532 #elif defined(_MSC_VER)
533 #define EIGEN_ALLOCA _alloca
534 #endif
535#endif
536
537// This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
538// at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
539template<typename T> class aligned_stack_memory_handler
540{
541 public:
542 /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
543 * Note that \a ptr can be 0 regardless of the other parameters.
544 * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization).
545 * In this case, the buffer elements will also be destructed when this handler will be destructed.
546 * Finally, if \a dealloc is true, then the pointer \a ptr is freed.
547 **/
548 aligned_stack_memory_handler(T* ptr, size_t size, bool dealloc)
549 : m_ptr(ptr), m_size(size), m_deallocate(dealloc)
550 {
551 if(NumTraits<T>::RequireInitialization && m_ptr)
552 Eigen::internal::construct_elements_of_array(m_ptr, size);
553 }
554 ~aligned_stack_memory_handler()
555 {
556 if(NumTraits<T>::RequireInitialization && m_ptr)
557 Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
558 if(m_deallocate)
559 Eigen::internal::aligned_free(m_ptr);
560 }
561 protected:
562 T* m_ptr;
563 size_t m_size;
564 bool m_deallocate;
565};
566
567} // end namespace internal
568
569/** \internal
570 * Declares, allocates and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack
571 * if SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform
572 * (currently, this is Linux and Visual Studio only). Otherwise the memory is allocated on the heap.
573 * The allocated buffer is automatically deleted when exiting the scope of this declaration.
574 * If BUFFER is non null, then the declared variable is simply an alias for BUFFER, and no allocation/deletion occurs.
575 * Here is an example:
576 * \code
577 * {
578 * ei_declare_aligned_stack_constructed_variable(float,data,size,0);
579 * // use data[0] to data[size-1]
580 * }
581 * \endcode
582 * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token.
583 */
584#ifdef EIGEN_ALLOCA
585
586 #if defined(__arm__) || defined(_WIN32)
587 #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+16)) & ~(size_t(15))) + 16)
588 #else
589 #define EIGEN_ALIGNED_ALLOCA EIGEN_ALLOCA
590 #endif
591
592 #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
593 Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
594 TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \
595 : reinterpret_cast<TYPE*>( \
596 (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \
597 : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \
598 Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT)
599
600#else
601
602 #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
603 Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
604 TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \
605 Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true)
606
607#endif
608
609
610/*****************************************************************************
611*** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] ***
612*****************************************************************************/
613
614#if EIGEN_ALIGN
615 #ifdef EIGEN_EXCEPTIONS
616 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
617 void* operator new(size_t size, const std::nothrow_t&) throw() { \
618 try { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
619 catch (...) { return 0; } \
620 }
621 #else
622 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
623 void* operator new(size_t size, const std::nothrow_t&) throw() { \
624 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
625 }
626 #endif
627
628 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
629 void *operator new(size_t size) { \
630 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
631 } \
632 void *operator new[](size_t size) { \
633 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
634 } \
635 void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
636 void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
637 void operator delete(void * ptr, std::size_t /* sz */) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
638 void operator delete[](void * ptr, std::size_t /* sz */) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
639 /* in-place new and delete. since (at least afaik) there is no actual */ \
640 /* memory allocated we can safely let the default implementation handle */ \
641 /* this particular case. */ \
642 static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \
643 static void *operator new[](size_t size, void* ptr) { return ::operator new[](size,ptr); } \
644 void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \
645 void operator delete[](void * memory, void *ptr) throw() { return ::operator delete[](memory,ptr); } \
646 /* nothrow-new (returns zero instead of std::bad_alloc) */ \
647 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
648 void operator delete(void *ptr, const std::nothrow_t&) throw() { \
649 Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
650 } \
651 typedef void eigen_aligned_operator_new_marker_type;
652#else
653 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
654#endif
655
656#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
657#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
658 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0)))
659
660/****************************************************************************/
661
662
663/** \class aligned_allocator
664 * \ingroup Core_Module
665 *
666 * \brief STL compatible allocator to use with with 16 byte aligned types
667 *
668 * Example:
669 * \code
670 * // Matrix4f requires 16 bytes alignment:
671 * std::map< int, Matrix4f, std::less<int>,
672 * aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4;
673 * // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
674 * std::map< int, Vector3f > my_map_vec3;
675 * \endcode
676 *
677 * \sa \blank \ref TopicStlContainers.
678 */
679template<class T>
680class aligned_allocator : public std::allocator<T>
681{
682public:
683 typedef size_t size_type;
684 typedef std::ptrdiff_t difference_type;
685 typedef T* pointer;
686 typedef const T* const_pointer;
687 typedef T& reference;
688 typedef const T& const_reference;
689 typedef T value_type;
690
691 template<class U>
692 struct rebind
693 {
694 typedef aligned_allocator<U> other;
695 };
696
697 aligned_allocator() : std::allocator<T>() {}
698
699 aligned_allocator(const aligned_allocator& other) : std::allocator<T>(other) {}
700
701 template<class U>
702 aligned_allocator(const aligned_allocator<U>& other) : std::allocator<T>(other) {}
703
704 ~aligned_allocator() {}
705
706 pointer allocate(size_type num, const void* /*hint*/ = 0)
707 {
708 internal::check_size_for_overflow<T>(num);
709 return static_cast<pointer>( internal::aligned_malloc(num * sizeof(T)) );
710 }
711
712 void deallocate(pointer p, size_type /*num*/)
713 {
714 internal::aligned_free(p);
715 }
716};
717
718//---------- Cache sizes ----------
719
720#if !defined(EIGEN_NO_CPUID)
721# if defined(__GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
722# if defined(__PIC__) && defined(__i386__)
723 // Case for x86 with PIC
724# define EIGEN_CPUID(abcd,func,id) \
725 __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
726# elif defined(__PIC__) && defined(__x86_64__)
727 // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model.
728 // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway.
729# define EIGEN_CPUID(abcd,func,id) \
730 __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id));
731# else
732 // Case for x86_64 or x86 w/o PIC
733# define EIGEN_CPUID(abcd,func,id) \
734 __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) );
735# endif
736# elif defined(_MSC_VER)
737# if (_MSC_VER > 1500) && ( defined(_M_IX86) || defined(_M_X64) )
738# define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
739# endif
740# endif
741#endif
742
743namespace internal {
744
745#ifdef EIGEN_CPUID
746
747inline bool cpuid_is_vendor(int abcd[4], const int vendor[3])
748{
749 return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2];
750}
751
752inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
753{
754 int abcd[4];
755 l1 = l2 = l3 = 0;
756 int cache_id = 0;
757 int cache_type = 0;
758 do {
759 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
760 EIGEN_CPUID(abcd,0x4,cache_id);
761 cache_type = (abcd[0] & 0x0F) >> 0;
762 if(cache_type==1||cache_type==3) // data or unified cache
763 {
764 int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5]
765 int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
766 int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
767 int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0]
768 int sets = (abcd[2]); // C[31:0]
769
770 int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
771
772 switch(cache_level)
773 {
774 case 1: l1 = cache_size; break;
775 case 2: l2 = cache_size; break;
776 case 3: l3 = cache_size; break;
777 default: break;
778 }
779 }
780 cache_id++;
781 } while(cache_type>0 && cache_id<16);
782}
783
784inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
785{
786 int abcd[4];
787 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
788 l1 = l2 = l3 = 0;
789 EIGEN_CPUID(abcd,0x00000002,0);
790 unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
791 bool check_for_p2_core2 = false;
792 for(int i=0; i<14; ++i)
793 {
794 switch(bytes[i])
795 {
796 case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines
797 case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines
798 case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines
799 case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
800 case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
801 case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines
802 case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines
803 case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
804 case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
805 case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
806 case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
807 case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
808 case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
809 case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
810 case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
811 case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
812 case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
813 case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
814 case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
815 case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
816 case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
817 case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
818 case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core)
819 case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
820 case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
821 case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
822 case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
823 case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
824 case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
825 case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
826 case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
827 case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
828 case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
829 case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
830 case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
831 case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
832 case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
833 case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
834 case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
835 case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
836 case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
837 case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
838 case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
839 case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
840 case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
841 case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
842 case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
843 case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
844 case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
845 case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
846 case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
847 case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
848 case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
849 case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
850 case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
851 case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
852 case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
853
854 default: break;
855 }
856 }
857 if(check_for_p2_core2 && l2 == l3)
858 l3 = 0;
859 l1 *= 1024;
860 l2 *= 1024;
861 l3 *= 1024;
862}
863
864inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
865{
866 if(max_std_funcs>=4)
867 queryCacheSizes_intel_direct(l1,l2,l3);
868 else
869 queryCacheSizes_intel_codes(l1,l2,l3);
870}
871
872inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
873{
874 int abcd[4];
875 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
876 EIGEN_CPUID(abcd,0x80000005,0);
877 l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
878 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
879 EIGEN_CPUID(abcd,0x80000006,0);
880 l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
881 l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
882}
883#endif
884
885/** \internal
886 * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */
887inline void queryCacheSizes(int& l1, int& l2, int& l3)
888{
889 #ifdef EIGEN_CPUID
890 int abcd[4];
891 const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e};
892 const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163};
893 const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!"
894
895 // identify the CPU vendor
896 EIGEN_CPUID(abcd,0x0,0);
897 int max_std_funcs = abcd[1];
898 if(cpuid_is_vendor(abcd,GenuineIntel))
899 queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
900 else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_))
901 queryCacheSizes_amd(l1,l2,l3);
902 else
903 // by default let's use Intel's API
904 queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
905
906 // here is the list of other vendors:
907// ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
908// ||cpuid_is_vendor(abcd,"CyrixInstead")
909// ||cpuid_is_vendor(abcd,"CentaurHauls")
910// ||cpuid_is_vendor(abcd,"GenuineTMx86")
911// ||cpuid_is_vendor(abcd,"TransmetaCPU")
912// ||cpuid_is_vendor(abcd,"RiseRiseRise")
913// ||cpuid_is_vendor(abcd,"Geode by NSC")
914// ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
915// ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
916// ||cpuid_is_vendor(abcd,"NexGenDriven")
917 #else
918 l1 = l2 = l3 = -1;
919 #endif
920}
921
922/** \internal
923 * \returns the size in Bytes of the L1 data cache */
924inline int queryL1CacheSize()
925{
926 int l1(-1), l2, l3;
927 queryCacheSizes(l1,l2,l3);
928 return l1;
929}
930
931/** \internal
932 * \returns the size in Bytes of the L2 or L3 cache if this later is present */
933inline int queryTopLevelCacheSize()
934{
935 int l1, l2(-1), l3(-1);
936 queryCacheSizes(l1,l2,l3);
937 return (std::max)(l2,l3);
938}
939
940} // end namespace internal
941
942} // end namespace Eigen
943
944#endif // EIGEN_MEMORY_H
Note: See TracBrowser for help on using the repository browser.