source: pacpussensors/trunk/Vislab/lib3dv/eigen/Eigen/src/Core/util/XprHelper.h@ 136

Last change on this file since 136 was 136, checked in by ldecherf, 7 years ago

Doc

File size: 16.9 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_XPRHELPER_H
12#define EIGEN_XPRHELPER_H
13
14// just a workaround because GCC seems to not really like empty structs
15// FIXME: gcc 4.3 generates bad code when strict-aliasing is enabled
16// so currently we simply disable this optimization for gcc 4.3
17#if (defined __GNUG__) && !((__GNUC__==4) && (__GNUC_MINOR__==3))
18 #define EIGEN_EMPTY_STRUCT_CTOR(X) \
19 EIGEN_STRONG_INLINE X() {} \
20 EIGEN_STRONG_INLINE X(const X& ) {}
21#else
22 #define EIGEN_EMPTY_STRUCT_CTOR(X)
23#endif
24
25namespace Eigen {
26
27typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex;
28
29namespace internal {
30
31//classes inheriting no_assignment_operator don't generate a default operator=.
32class no_assignment_operator
33{
34 private:
35 no_assignment_operator& operator=(const no_assignment_operator&);
36};
37
38/** \internal return the index type with the largest number of bits */
39template<typename I1, typename I2>
40struct promote_index_type
41{
42 typedef typename conditional<(sizeof(I1)<sizeof(I2)), I2, I1>::type type;
43};
44
45/** \internal If the template parameter Value is Dynamic, this class is just a wrapper around a T variable that
46 * can be accessed using value() and setValue().
47 * Otherwise, this class is an empty structure and value() just returns the template parameter Value.
48 */
49template<typename T, int Value> class variable_if_dynamic
50{
51 public:
52 EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamic)
53 explicit variable_if_dynamic(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); assert(v == T(Value)); }
54 static T value() { return T(Value); }
55 void setValue(T) {}
56};
57
58template<typename T> class variable_if_dynamic<T, Dynamic>
59{
60 T m_value;
61 variable_if_dynamic() { assert(false); }
62 public:
63 explicit variable_if_dynamic(T value) : m_value(value) {}
64 T value() const { return m_value; }
65 void setValue(T value) { m_value = value; }
66};
67
68/** \internal like variable_if_dynamic but for DynamicIndex
69 */
70template<typename T, int Value> class variable_if_dynamicindex
71{
72 public:
73 EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamicindex)
74 explicit variable_if_dynamicindex(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); assert(v == T(Value)); }
75 static T value() { return T(Value); }
76 void setValue(T) {}
77};
78
79template<typename T> class variable_if_dynamicindex<T, DynamicIndex>
80{
81 T m_value;
82 variable_if_dynamicindex() { assert(false); }
83 public:
84 explicit variable_if_dynamicindex(T value) : m_value(value) {}
85 T value() const { return m_value; }
86 void setValue(T value) { m_value = value; }
87};
88
89template<typename T> struct functor_traits
90{
91 enum
92 {
93 Cost = 10,
94 PacketAccess = false,
95 IsRepeatable = false
96 };
97};
98
99template<typename T> struct packet_traits;
100
101template<typename T> struct unpacket_traits
102{
103 typedef T type;
104 enum {size=1};
105};
106
107template<typename _Scalar, int _Rows, int _Cols,
108 int _Options = AutoAlign |
109 ( (_Rows==1 && _Cols!=1) ? RowMajor
110 : (_Cols==1 && _Rows!=1) ? ColMajor
111 : EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
112 int _MaxRows = _Rows,
113 int _MaxCols = _Cols
114> class make_proper_matrix_type
115{
116 enum {
117 IsColVector = _Cols==1 && _Rows!=1,
118 IsRowVector = _Rows==1 && _Cols!=1,
119 Options = IsColVector ? (_Options | ColMajor) & ~RowMajor
120 : IsRowVector ? (_Options | RowMajor) & ~ColMajor
121 : _Options
122 };
123 public:
124 typedef Matrix<_Scalar, _Rows, _Cols, Options, _MaxRows, _MaxCols> type;
125};
126
127template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
128class compute_matrix_flags
129{
130 enum {
131 row_major_bit = Options&RowMajor ? RowMajorBit : 0,
132 is_dynamic_size_storage = MaxRows==Dynamic || MaxCols==Dynamic,
133
134 aligned_bit =
135 (
136 ((Options&DontAlign)==0)
137 && (
138#if EIGEN_ALIGN_STATICALLY
139 ((!is_dynamic_size_storage) && (((MaxCols*MaxRows*int(sizeof(Scalar))) % 16) == 0))
140#else
141 0
142#endif
143
144 ||
145
146#if EIGEN_ALIGN
147 is_dynamic_size_storage
148#else
149 0
150#endif
151
152 )
153 ) ? AlignedBit : 0,
154 packet_access_bit = packet_traits<Scalar>::Vectorizable && aligned_bit ? PacketAccessBit : 0
155 };
156
157 public:
158 enum { ret = LinearAccessBit | LvalueBit | DirectAccessBit | NestByRefBit | packet_access_bit | row_major_bit | aligned_bit };
159};
160
161template<int _Rows, int _Cols> struct size_at_compile_time
162{
163 enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols };
164};
165
166/* plain_matrix_type : the difference from eval is that plain_matrix_type is always a plain matrix type,
167 * whereas eval is a const reference in the case of a matrix
168 */
169
170template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct plain_matrix_type;
171template<typename T, typename BaseClassType> struct plain_matrix_type_dense;
172template<typename T> struct plain_matrix_type<T,Dense>
173{
174 typedef typename plain_matrix_type_dense<T,typename traits<T>::XprKind>::type type;
175};
176
177template<typename T> struct plain_matrix_type_dense<T,MatrixXpr>
178{
179 typedef Matrix<typename traits<T>::Scalar,
180 traits<T>::RowsAtCompileTime,
181 traits<T>::ColsAtCompileTime,
182 AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
183 traits<T>::MaxRowsAtCompileTime,
184 traits<T>::MaxColsAtCompileTime
185 > type;
186};
187
188template<typename T> struct plain_matrix_type_dense<T,ArrayXpr>
189{
190 typedef Array<typename traits<T>::Scalar,
191 traits<T>::RowsAtCompileTime,
192 traits<T>::ColsAtCompileTime,
193 AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
194 traits<T>::MaxRowsAtCompileTime,
195 traits<T>::MaxColsAtCompileTime
196 > type;
197};
198
199/* eval : the return type of eval(). For matrices, this is just a const reference
200 * in order to avoid a useless copy
201 */
202
203template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct eval;
204
205template<typename T> struct eval<T,Dense>
206{
207 typedef typename plain_matrix_type<T>::type type;
208// typedef typename T::PlainObject type;
209// typedef T::Matrix<typename traits<T>::Scalar,
210// traits<T>::RowsAtCompileTime,
211// traits<T>::ColsAtCompileTime,
212// AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
213// traits<T>::MaxRowsAtCompileTime,
214// traits<T>::MaxColsAtCompileTime
215// > type;
216};
217
218// for matrices, no need to evaluate, just use a const reference to avoid a useless copy
219template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
220struct eval<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
221{
222 typedef const Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
223};
224
225template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
226struct eval<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
227{
228 typedef const Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
229};
230
231
232
233/* plain_matrix_type_column_major : same as plain_matrix_type but guaranteed to be column-major
234 */
235template<typename T> struct plain_matrix_type_column_major
236{
237 enum { Rows = traits<T>::RowsAtCompileTime,
238 Cols = traits<T>::ColsAtCompileTime,
239 MaxRows = traits<T>::MaxRowsAtCompileTime,
240 MaxCols = traits<T>::MaxColsAtCompileTime
241 };
242 typedef Matrix<typename traits<T>::Scalar,
243 Rows,
244 Cols,
245 (MaxRows==1&&MaxCols!=1) ? RowMajor : ColMajor,
246 MaxRows,
247 MaxCols
248 > type;
249};
250
251/* plain_matrix_type_row_major : same as plain_matrix_type but guaranteed to be row-major
252 */
253template<typename T> struct plain_matrix_type_row_major
254{
255 enum { Rows = traits<T>::RowsAtCompileTime,
256 Cols = traits<T>::ColsAtCompileTime,
257 MaxRows = traits<T>::MaxRowsAtCompileTime,
258 MaxCols = traits<T>::MaxColsAtCompileTime
259 };
260 typedef Matrix<typename traits<T>::Scalar,
261 Rows,
262 Cols,
263 (MaxCols==1&&MaxRows!=1) ? RowMajor : ColMajor,
264 MaxRows,
265 MaxCols
266 > type;
267};
268
269// we should be able to get rid of this one too
270template<typename T> struct must_nest_by_value { enum { ret = false }; };
271
272/** \internal The reference selector for template expressions. The idea is that we don't
273 * need to use references for expressions since they are light weight proxy
274 * objects which should generate no copying overhead. */
275template <typename T>
276struct ref_selector
277{
278 typedef typename conditional<
279 bool(traits<T>::Flags & NestByRefBit),
280 T const&,
281 const T
282 >::type type;
283};
284
285/** \internal Adds the const qualifier on the value-type of T2 if and only if T1 is a const type */
286template<typename T1, typename T2>
287struct transfer_constness
288{
289 typedef typename conditional<
290 bool(internal::is_const<T1>::value),
291 typename internal::add_const_on_value_type<T2>::type,
292 T2
293 >::type type;
294};
295
296/** \internal Determines how a given expression should be nested into another one.
297 * For example, when you do a * (b+c), Eigen will determine how the expression b+c should be
298 * nested into the bigger product expression. The choice is between nesting the expression b+c as-is, or
299 * evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is
300 * a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes
301 * many coefficient accesses in the nested expressions -- as is the case with matrix product for example.
302 *
303 * \param T the type of the expression being nested
304 * \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression.
305 *
306 * Note that if no evaluation occur, then the constness of T is preserved.
307 *
308 * Example. Suppose that a, b, and c are of type Matrix3d. The user forms the expression a*(b+c).
309 * b+c is an expression "sum of matrices", which we will denote by S. In order to determine how to nest it,
310 * the Product expression uses: nested<S, 3>::ret, which turns out to be Matrix3d because the internal logic of
311 * nested determined that in this case it was better to evaluate the expression b+c into a temporary. On the other hand,
312 * since a is of type Matrix3d, the Product expression nests it as nested<Matrix3d, 3>::ret, which turns out to be
313 * const Matrix3d&, because the internal logic of nested determined that since a was already a matrix, there was no point
314 * in copying it into another matrix.
315 */
316template<typename T, int n=1, typename PlainObject = typename eval<T>::type> struct nested
317{
318 enum {
319 // for the purpose of this test, to keep it reasonably simple, we arbitrarily choose a value of Dynamic values.
320 // the choice of 10000 makes it larger than any practical fixed value and even most dynamic values.
321 // in extreme cases where these assumptions would be wrong, we would still at worst suffer performance issues
322 // (poor choice of temporaries).
323 // it's important that this value can still be squared without integer overflowing.
324 DynamicAsInteger = 10000,
325 ScalarReadCost = NumTraits<typename traits<T>::Scalar>::ReadCost,
326 ScalarReadCostAsInteger = ScalarReadCost == Dynamic ? int(DynamicAsInteger) : int(ScalarReadCost),
327 CoeffReadCost = traits<T>::CoeffReadCost,
328 CoeffReadCostAsInteger = CoeffReadCost == Dynamic ? int(DynamicAsInteger) : int(CoeffReadCost),
329 NAsInteger = n == Dynamic ? int(DynamicAsInteger) : n,
330 CostEvalAsInteger = (NAsInteger+1) * ScalarReadCostAsInteger + CoeffReadCostAsInteger,
331 CostNoEvalAsInteger = NAsInteger * CoeffReadCostAsInteger
332 };
333
334 typedef typename conditional<
335 ( (int(traits<T>::Flags) & EvalBeforeNestingBit) ||
336 int(CostEvalAsInteger) < int(CostNoEvalAsInteger)
337 ),
338 PlainObject,
339 typename ref_selector<T>::type
340 >::type type;
341};
342
343template<typename T>
344inline T* const_cast_ptr(const T* ptr)
345{
346 return const_cast<T*>(ptr);
347}
348
349template<typename Derived, typename XprKind = typename traits<Derived>::XprKind>
350struct dense_xpr_base
351{
352 /* dense_xpr_base should only ever be used on dense expressions, thus falling either into the MatrixXpr or into the ArrayXpr cases */
353};
354
355template<typename Derived>
356struct dense_xpr_base<Derived, MatrixXpr>
357{
358 typedef MatrixBase<Derived> type;
359};
360
361template<typename Derived>
362struct dense_xpr_base<Derived, ArrayXpr>
363{
364 typedef ArrayBase<Derived> type;
365};
366
367/** \internal Helper base class to add a scalar multiple operator
368 * overloads for complex types */
369template<typename Derived, typename Scalar, typename OtherScalar, typename BaseType,
370 bool EnableIt = !is_same<Scalar,OtherScalar>::value >
371struct special_scalar_op_base : public BaseType
372{
373 // dummy operator* so that the
374 // "using special_scalar_op_base::operator*" compiles
375 void operator*() const;
376};
377
378template<typename Derived,typename Scalar,typename OtherScalar, typename BaseType>
379struct special_scalar_op_base<Derived,Scalar,OtherScalar,BaseType,true> : public BaseType
380{
381 const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
382 operator*(const OtherScalar& scalar) const
383 {
384 return CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
385 (*static_cast<const Derived*>(this), scalar_multiple2_op<Scalar,OtherScalar>(scalar));
386 }
387
388 inline friend const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
389 operator*(const OtherScalar& scalar, const Derived& matrix)
390 { return static_cast<const special_scalar_op_base&>(matrix).operator*(scalar); }
391};
392
393template<typename XprType, typename CastType> struct cast_return_type
394{
395 typedef typename XprType::Scalar CurrentScalarType;
396 typedef typename remove_all<CastType>::type _CastType;
397 typedef typename _CastType::Scalar NewScalarType;
398 typedef typename conditional<is_same<CurrentScalarType,NewScalarType>::value,
399 const XprType&,CastType>::type type;
400};
401
402template <typename A, typename B> struct promote_storage_type;
403
404template <typename A> struct promote_storage_type<A,A>
405{
406 typedef A ret;
407};
408
409/** \internal gives the plain matrix or array type to store a row/column/diagonal of a matrix type.
410 * \param Scalar optional parameter allowing to pass a different scalar type than the one of the MatrixType.
411 */
412template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
413struct plain_row_type
414{
415 typedef Matrix<Scalar, 1, ExpressionType::ColsAtCompileTime,
416 ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> MatrixRowType;
417 typedef Array<Scalar, 1, ExpressionType::ColsAtCompileTime,
418 ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> ArrayRowType;
419
420 typedef typename conditional<
421 is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
422 MatrixRowType,
423 ArrayRowType
424 >::type type;
425};
426
427template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
428struct plain_col_type
429{
430 typedef Matrix<Scalar, ExpressionType::RowsAtCompileTime, 1,
431 ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> MatrixColType;
432 typedef Array<Scalar, ExpressionType::RowsAtCompileTime, 1,
433 ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> ArrayColType;
434
435 typedef typename conditional<
436 is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
437 MatrixColType,
438 ArrayColType
439 >::type type;
440};
441
442template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
443struct plain_diag_type
444{
445 enum { diag_size = EIGEN_SIZE_MIN_PREFER_DYNAMIC(ExpressionType::RowsAtCompileTime, ExpressionType::ColsAtCompileTime),
446 max_diag_size = EIGEN_SIZE_MIN_PREFER_FIXED(ExpressionType::MaxRowsAtCompileTime, ExpressionType::MaxColsAtCompileTime)
447 };
448 typedef Matrix<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> MatrixDiagType;
449 typedef Array<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> ArrayDiagType;
450
451 typedef typename conditional<
452 is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
453 MatrixDiagType,
454 ArrayDiagType
455 >::type type;
456};
457
458template<typename ExpressionType>
459struct is_lvalue
460{
461 enum { value = !bool(is_const<ExpressionType>::value) &&
462 bool(traits<ExpressionType>::Flags & LvalueBit) };
463};
464
465} // end namespace internal
466
467} // end namespace Eigen
468
469#endif // EIGEN_XPRHELPER_H
Note: See TracBrowser for help on using the repository browser.