source: pacpussensors/trunk/Vislab/lib3dv/eigen/Eigen/src/Eigen2Support/Geometry/Quaternion.h@ 136

Last change on this file since 136 was 136, checked in by ldecherf, 7 years ago

Doc

File size: 16.5 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
11
12namespace Eigen {
13
14template<typename Other,
15 int OtherRows=Other::RowsAtCompileTime,
16 int OtherCols=Other::ColsAtCompileTime>
17struct ei_quaternion_assign_impl;
18
19/** \geometry_module \ingroup Geometry_Module
20 *
21 * \class Quaternion
22 *
23 * \brief The quaternion class used to represent 3D orientations and rotations
24 *
25 * \param _Scalar the scalar type, i.e., the type of the coefficients
26 *
27 * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
28 * orientations and rotations of objects in three dimensions. Compared to other representations
29 * like Euler angles or 3x3 matrices, quatertions offer the following advantages:
30 * \li \b compact storage (4 scalars)
31 * \li \b efficient to compose (28 flops),
32 * \li \b stable spherical interpolation
33 *
34 * The following two typedefs are provided for convenience:
35 * \li \c Quaternionf for \c float
36 * \li \c Quaterniond for \c double
37 *
38 * \sa class AngleAxis, class Transform
39 */
40
41template<typename _Scalar> struct ei_traits<Quaternion<_Scalar> >
42{
43 typedef _Scalar Scalar;
44};
45
46template<typename _Scalar>
47class Quaternion : public RotationBase<Quaternion<_Scalar>,3>
48{
49 typedef RotationBase<Quaternion<_Scalar>,3> Base;
50
51public:
52 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,4)
53
54 using Base::operator*;
55
56 /** the scalar type of the coefficients */
57 typedef _Scalar Scalar;
58
59 /** the type of the Coefficients 4-vector */
60 typedef Matrix<Scalar, 4, 1> Coefficients;
61 /** the type of a 3D vector */
62 typedef Matrix<Scalar,3,1> Vector3;
63 /** the equivalent rotation matrix type */
64 typedef Matrix<Scalar,3,3> Matrix3;
65 /** the equivalent angle-axis type */
66 typedef AngleAxis<Scalar> AngleAxisType;
67
68 /** \returns the \c x coefficient */
69 inline Scalar x() const { return m_coeffs.coeff(0); }
70 /** \returns the \c y coefficient */
71 inline Scalar y() const { return m_coeffs.coeff(1); }
72 /** \returns the \c z coefficient */
73 inline Scalar z() const { return m_coeffs.coeff(2); }
74 /** \returns the \c w coefficient */
75 inline Scalar w() const { return m_coeffs.coeff(3); }
76
77 /** \returns a reference to the \c x coefficient */
78 inline Scalar& x() { return m_coeffs.coeffRef(0); }
79 /** \returns a reference to the \c y coefficient */
80 inline Scalar& y() { return m_coeffs.coeffRef(1); }
81 /** \returns a reference to the \c z coefficient */
82 inline Scalar& z() { return m_coeffs.coeffRef(2); }
83 /** \returns a reference to the \c w coefficient */
84 inline Scalar& w() { return m_coeffs.coeffRef(3); }
85
86 /** \returns a read-only vector expression of the imaginary part (x,y,z) */
87 inline const Block<const Coefficients,3,1> vec() const { return m_coeffs.template start<3>(); }
88
89 /** \returns a vector expression of the imaginary part (x,y,z) */
90 inline Block<Coefficients,3,1> vec() { return m_coeffs.template start<3>(); }
91
92 /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
93 inline const Coefficients& coeffs() const { return m_coeffs; }
94
95 /** \returns a vector expression of the coefficients (x,y,z,w) */
96 inline Coefficients& coeffs() { return m_coeffs; }
97
98 /** Default constructor leaving the quaternion uninitialized. */
99 inline Quaternion() {}
100
101 /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
102 * its four coefficients \a w, \a x, \a y and \a z.
103 *
104 * \warning Note the order of the arguments: the real \a w coefficient first,
105 * while internally the coefficients are stored in the following order:
106 * [\c x, \c y, \c z, \c w]
107 */
108 inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z)
109 { m_coeffs << x, y, z, w; }
110
111 /** Copy constructor */
112 inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; }
113
114 /** Constructs and initializes a quaternion from the angle-axis \a aa */
115 explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
116
117 /** Constructs and initializes a quaternion from either:
118 * - a rotation matrix expression,
119 * - a 4D vector expression representing quaternion coefficients.
120 * \sa operator=(MatrixBase<Derived>)
121 */
122 template<typename Derived>
123 explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
124
125 Quaternion& operator=(const Quaternion& other);
126 Quaternion& operator=(const AngleAxisType& aa);
127 template<typename Derived>
128 Quaternion& operator=(const MatrixBase<Derived>& m);
129
130 /** \returns a quaternion representing an identity rotation
131 * \sa MatrixBase::Identity()
132 */
133 static inline Quaternion Identity() { return Quaternion(1, 0, 0, 0); }
134
135 /** \sa Quaternion::Identity(), MatrixBase::setIdentity()
136 */
137 inline Quaternion& setIdentity() { m_coeffs << 0, 0, 0, 1; return *this; }
138
139 /** \returns the squared norm of the quaternion's coefficients
140 * \sa Quaternion::norm(), MatrixBase::squaredNorm()
141 */
142 inline Scalar squaredNorm() const { return m_coeffs.squaredNorm(); }
143
144 /** \returns the norm of the quaternion's coefficients
145 * \sa Quaternion::squaredNorm(), MatrixBase::norm()
146 */
147 inline Scalar norm() const { return m_coeffs.norm(); }
148
149 /** Normalizes the quaternion \c *this
150 * \sa normalized(), MatrixBase::normalize() */
151 inline void normalize() { m_coeffs.normalize(); }
152 /** \returns a normalized version of \c *this
153 * \sa normalize(), MatrixBase::normalized() */
154 inline Quaternion normalized() const { return Quaternion(m_coeffs.normalized()); }
155
156 /** \returns the dot product of \c *this and \a other
157 * Geometrically speaking, the dot product of two unit quaternions
158 * corresponds to the cosine of half the angle between the two rotations.
159 * \sa angularDistance()
160 */
161 inline Scalar eigen2_dot(const Quaternion& other) const { return m_coeffs.eigen2_dot(other.m_coeffs); }
162
163 inline Scalar angularDistance(const Quaternion& other) const;
164
165 Matrix3 toRotationMatrix(void) const;
166
167 template<typename Derived1, typename Derived2>
168 Quaternion& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
169
170 inline Quaternion operator* (const Quaternion& q) const;
171 inline Quaternion& operator*= (const Quaternion& q);
172
173 Quaternion inverse(void) const;
174 Quaternion conjugate(void) const;
175
176 Quaternion slerp(Scalar t, const Quaternion& other) const;
177
178 template<typename Derived>
179 Vector3 operator* (const MatrixBase<Derived>& vec) const;
180
181 /** \returns \c *this with scalar type casted to \a NewScalarType
182 *
183 * Note that if \a NewScalarType is equal to the current scalar type of \c *this
184 * then this function smartly returns a const reference to \c *this.
185 */
186 template<typename NewScalarType>
187 inline typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type cast() const
188 { return typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type(*this); }
189
190 /** Copy constructor with scalar type conversion */
191 template<typename OtherScalarType>
192 inline explicit Quaternion(const Quaternion<OtherScalarType>& other)
193 { m_coeffs = other.coeffs().template cast<Scalar>(); }
194
195 /** \returns \c true if \c *this is approximately equal to \a other, within the precision
196 * determined by \a prec.
197 *
198 * \sa MatrixBase::isApprox() */
199 bool isApprox(const Quaternion& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
200 { return m_coeffs.isApprox(other.m_coeffs, prec); }
201
202protected:
203 Coefficients m_coeffs;
204};
205
206/** \ingroup Geometry_Module
207 * single precision quaternion type */
208typedef Quaternion<float> Quaternionf;
209/** \ingroup Geometry_Module
210 * double precision quaternion type */
211typedef Quaternion<double> Quaterniond;
212
213// Generic Quaternion * Quaternion product
214template<typename Scalar> inline Quaternion<Scalar>
215ei_quaternion_product(const Quaternion<Scalar>& a, const Quaternion<Scalar>& b)
216{
217 return Quaternion<Scalar>
218 (
219 a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
220 a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
221 a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
222 a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
223 );
224}
225
226/** \returns the concatenation of two rotations as a quaternion-quaternion product */
227template <typename Scalar>
228inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other) const
229{
230 return ei_quaternion_product(*this,other);
231}
232
233/** \sa operator*(Quaternion) */
234template <typename Scalar>
235inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& other)
236{
237 return (*this = *this * other);
238}
239
240/** Rotation of a vector by a quaternion.
241 * \remarks If the quaternion is used to rotate several points (>1)
242 * then it is much more efficient to first convert it to a 3x3 Matrix.
243 * Comparison of the operation cost for n transformations:
244 * - Quaternion: 30n
245 * - Via a Matrix3: 24 + 15n
246 */
247template <typename Scalar>
248template<typename Derived>
249inline typename Quaternion<Scalar>::Vector3
250Quaternion<Scalar>::operator* (const MatrixBase<Derived>& v) const
251{
252 // Note that this algorithm comes from the optimization by hand
253 // of the conversion to a Matrix followed by a Matrix/Vector product.
254 // It appears to be much faster than the common algorithm found
255 // in the litterature (30 versus 39 flops). It also requires two
256 // Vector3 as temporaries.
257 Vector3 uv;
258 uv = 2 * this->vec().cross(v);
259 return v + this->w() * uv + this->vec().cross(uv);
260}
261
262template<typename Scalar>
263inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const Quaternion& other)
264{
265 m_coeffs = other.m_coeffs;
266 return *this;
267}
268
269/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
270 */
271template<typename Scalar>
272inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const AngleAxisType& aa)
273{
274 Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
275 this->w() = ei_cos(ha);
276 this->vec() = ei_sin(ha) * aa.axis();
277 return *this;
278}
279
280/** Set \c *this from the expression \a xpr:
281 * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
282 * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
283 * and \a xpr is converted to a quaternion
284 */
285template<typename Scalar>
286template<typename Derived>
287inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const MatrixBase<Derived>& xpr)
288{
289 ei_quaternion_assign_impl<Derived>::run(*this, xpr.derived());
290 return *this;
291}
292
293/** Convert the quaternion to a 3x3 rotation matrix */
294template<typename Scalar>
295inline typename Quaternion<Scalar>::Matrix3
296Quaternion<Scalar>::toRotationMatrix(void) const
297{
298 // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
299 // if not inlined then the cost of the return by value is huge ~ +35%,
300 // however, not inlining this function is an order of magnitude slower, so
301 // it has to be inlined, and so the return by value is not an issue
302 Matrix3 res;
303
304 const Scalar tx = Scalar(2)*this->x();
305 const Scalar ty = Scalar(2)*this->y();
306 const Scalar tz = Scalar(2)*this->z();
307 const Scalar twx = tx*this->w();
308 const Scalar twy = ty*this->w();
309 const Scalar twz = tz*this->w();
310 const Scalar txx = tx*this->x();
311 const Scalar txy = ty*this->x();
312 const Scalar txz = tz*this->x();
313 const Scalar tyy = ty*this->y();
314 const Scalar tyz = tz*this->y();
315 const Scalar tzz = tz*this->z();
316
317 res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
318 res.coeffRef(0,1) = txy-twz;
319 res.coeffRef(0,2) = txz+twy;
320 res.coeffRef(1,0) = txy+twz;
321 res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
322 res.coeffRef(1,2) = tyz-twx;
323 res.coeffRef(2,0) = txz-twy;
324 res.coeffRef(2,1) = tyz+twx;
325 res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
326
327 return res;
328}
329
330/** Sets *this to be a quaternion representing a rotation sending the vector \a a to the vector \a b.
331 *
332 * \returns a reference to *this.
333 *
334 * Note that the two input vectors do \b not have to be normalized.
335 */
336template<typename Scalar>
337template<typename Derived1, typename Derived2>
338inline Quaternion<Scalar>& Quaternion<Scalar>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
339{
340 Vector3 v0 = a.normalized();
341 Vector3 v1 = b.normalized();
342 Scalar c = v0.eigen2_dot(v1);
343
344 // if dot == 1, vectors are the same
345 if (ei_isApprox(c,Scalar(1)))
346 {
347 // set to identity
348 this->w() = 1; this->vec().setZero();
349 return *this;
350 }
351 // if dot == -1, vectors are opposites
352 if (ei_isApprox(c,Scalar(-1)))
353 {
354 this->vec() = v0.unitOrthogonal();
355 this->w() = 0;
356 return *this;
357 }
358
359 Vector3 axis = v0.cross(v1);
360 Scalar s = ei_sqrt((Scalar(1)+c)*Scalar(2));
361 Scalar invs = Scalar(1)/s;
362 this->vec() = axis * invs;
363 this->w() = s * Scalar(0.5);
364
365 return *this;
366}
367
368/** \returns the multiplicative inverse of \c *this
369 * Note that in most cases, i.e., if you simply want the opposite rotation,
370 * and/or the quaternion is normalized, then it is enough to use the conjugate.
371 *
372 * \sa Quaternion::conjugate()
373 */
374template <typename Scalar>
375inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const
376{
377 // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
378 Scalar n2 = this->squaredNorm();
379 if (n2 > 0)
380 return Quaternion(conjugate().coeffs() / n2);
381 else
382 {
383 // return an invalid result to flag the error
384 return Quaternion(Coefficients::Zero());
385 }
386}
387
388/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
389 * if the quaternion is normalized.
390 * The conjugate of a quaternion represents the opposite rotation.
391 *
392 * \sa Quaternion::inverse()
393 */
394template <typename Scalar>
395inline Quaternion<Scalar> Quaternion<Scalar>::conjugate() const
396{
397 return Quaternion(this->w(),-this->x(),-this->y(),-this->z());
398}
399
400/** \returns the angle (in radian) between two rotations
401 * \sa eigen2_dot()
402 */
403template <typename Scalar>
404inline Scalar Quaternion<Scalar>::angularDistance(const Quaternion& other) const
405{
406 double d = ei_abs(this->eigen2_dot(other));
407 if (d>=1.0)
408 return 0;
409 return Scalar(2) * std::acos(d);
410}
411
412/** \returns the spherical linear interpolation between the two quaternions
413 * \c *this and \a other at the parameter \a t
414 */
415template <typename Scalar>
416Quaternion<Scalar> Quaternion<Scalar>::slerp(Scalar t, const Quaternion& other) const
417{
418 static const Scalar one = Scalar(1) - machine_epsilon<Scalar>();
419 Scalar d = this->eigen2_dot(other);
420 Scalar absD = ei_abs(d);
421
422 Scalar scale0;
423 Scalar scale1;
424
425 if (absD>=one)
426 {
427 scale0 = Scalar(1) - t;
428 scale1 = t;
429 }
430 else
431 {
432 // theta is the angle between the 2 quaternions
433 Scalar theta = std::acos(absD);
434 Scalar sinTheta = ei_sin(theta);
435
436 scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta;
437 scale1 = ei_sin( ( t * theta) ) / sinTheta;
438 if (d<0)
439 scale1 = -scale1;
440 }
441
442 return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
443}
444
445// set from a rotation matrix
446template<typename Other>
447struct ei_quaternion_assign_impl<Other,3,3>
448{
449 typedef typename Other::Scalar Scalar;
450 static inline void run(Quaternion<Scalar>& q, const Other& mat)
451 {
452 // This algorithm comes from "Quaternion Calculus and Fast Animation",
453 // Ken Shoemake, 1987 SIGGRAPH course notes
454 Scalar t = mat.trace();
455 if (t > 0)
456 {
457 t = ei_sqrt(t + Scalar(1.0));
458 q.w() = Scalar(0.5)*t;
459 t = Scalar(0.5)/t;
460 q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
461 q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
462 q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
463 }
464 else
465 {
466 int i = 0;
467 if (mat.coeff(1,1) > mat.coeff(0,0))
468 i = 1;
469 if (mat.coeff(2,2) > mat.coeff(i,i))
470 i = 2;
471 int j = (i+1)%3;
472 int k = (j+1)%3;
473
474 t = ei_sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
475 q.coeffs().coeffRef(i) = Scalar(0.5) * t;
476 t = Scalar(0.5)/t;
477 q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
478 q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
479 q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
480 }
481 }
482};
483
484// set from a vector of coefficients assumed to be a quaternion
485template<typename Other>
486struct ei_quaternion_assign_impl<Other,4,1>
487{
488 typedef typename Other::Scalar Scalar;
489 static inline void run(Quaternion<Scalar>& q, const Other& vec)
490 {
491 q.coeffs() = vec;
492 }
493};
494
495} // end namespace Eigen
Note: See TracBrowser for help on using the repository browser.