source: pacpussensors/trunk/Vislab/lib3dv/eigen/Eigen/src/Eigen2Support/Geometry/Transform.h@ 136

Last change on this file since 136 was 136, checked in by ldecherf, 7 years ago

Doc

File size: 27.6 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
12
13namespace Eigen {
14
15// Note that we have to pass Dim and HDim because it is not allowed to use a template
16// parameter to define a template specialization. To be more precise, in the following
17// specializations, it is not allowed to use Dim+1 instead of HDim.
18template< typename Other,
19 int Dim,
20 int HDim,
21 int OtherRows=Other::RowsAtCompileTime,
22 int OtherCols=Other::ColsAtCompileTime>
23struct ei_transform_product_impl;
24
25/** \geometry_module \ingroup Geometry_Module
26 *
27 * \class Transform
28 *
29 * \brief Represents an homogeneous transformation in a N dimensional space
30 *
31 * \param _Scalar the scalar type, i.e., the type of the coefficients
32 * \param _Dim the dimension of the space
33 *
34 * The homography is internally represented and stored as a (Dim+1)^2 matrix which
35 * is available through the matrix() method.
36 *
37 * Conversion methods from/to Qt's QMatrix and QTransform are available if the
38 * preprocessor token EIGEN_QT_SUPPORT is defined.
39 *
40 * \sa class Matrix, class Quaternion
41 */
42template<typename _Scalar, int _Dim>
43class Transform
44{
45public:
46 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
47 enum {
48 Dim = _Dim, ///< space dimension in which the transformation holds
49 HDim = _Dim+1 ///< size of a respective homogeneous vector
50 };
51 /** the scalar type of the coefficients */
52 typedef _Scalar Scalar;
53 /** type of the matrix used to represent the transformation */
54 typedef Matrix<Scalar,HDim,HDim> MatrixType;
55 /** type of the matrix used to represent the linear part of the transformation */
56 typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
57 /** type of read/write reference to the linear part of the transformation */
58 typedef Block<MatrixType,Dim,Dim> LinearPart;
59 /** type of read/write reference to the linear part of the transformation */
60 typedef const Block<const MatrixType,Dim,Dim> ConstLinearPart;
61 /** type of a vector */
62 typedef Matrix<Scalar,Dim,1> VectorType;
63 /** type of a read/write reference to the translation part of the rotation */
64 typedef Block<MatrixType,Dim,1> TranslationPart;
65 /** type of a read/write reference to the translation part of the rotation */
66 typedef const Block<const MatrixType,Dim,1> ConstTranslationPart;
67 /** corresponding translation type */
68 typedef Translation<Scalar,Dim> TranslationType;
69 /** corresponding scaling transformation type */
70 typedef Scaling<Scalar,Dim> ScalingType;
71
72protected:
73
74 MatrixType m_matrix;
75
76public:
77
78 /** Default constructor without initialization of the coefficients. */
79 inline Transform() { }
80
81 inline Transform(const Transform& other)
82 {
83 m_matrix = other.m_matrix;
84 }
85
86 inline explicit Transform(const TranslationType& t) { *this = t; }
87 inline explicit Transform(const ScalingType& s) { *this = s; }
88 template<typename Derived>
89 inline explicit Transform(const RotationBase<Derived, Dim>& r) { *this = r; }
90
91 inline Transform& operator=(const Transform& other)
92 { m_matrix = other.m_matrix; return *this; }
93
94 template<typename OtherDerived, bool BigMatrix> // MSVC 2005 will commit suicide if BigMatrix has a default value
95 struct construct_from_matrix
96 {
97 static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other)
98 {
99 transform->matrix() = other;
100 }
101 };
102
103 template<typename OtherDerived> struct construct_from_matrix<OtherDerived, true>
104 {
105 static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other)
106 {
107 transform->linear() = other;
108 transform->translation().setZero();
109 transform->matrix()(Dim,Dim) = Scalar(1);
110 transform->matrix().template block<1,Dim>(Dim,0).setZero();
111 }
112 };
113
114 /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
115 template<typename OtherDerived>
116 inline explicit Transform(const MatrixBase<OtherDerived>& other)
117 {
118 construct_from_matrix<OtherDerived, int(OtherDerived::RowsAtCompileTime) == Dim>::run(this, other);
119 }
120
121 /** Set \c *this from a (Dim+1)^2 matrix. */
122 template<typename OtherDerived>
123 inline Transform& operator=(const MatrixBase<OtherDerived>& other)
124 { m_matrix = other; return *this; }
125
126 #ifdef EIGEN_QT_SUPPORT
127 inline Transform(const QMatrix& other);
128 inline Transform& operator=(const QMatrix& other);
129 inline QMatrix toQMatrix(void) const;
130 inline Transform(const QTransform& other);
131 inline Transform& operator=(const QTransform& other);
132 inline QTransform toQTransform(void) const;
133 #endif
134
135 /** shortcut for m_matrix(row,col);
136 * \sa MatrixBase::operaror(int,int) const */
137 inline Scalar operator() (int row, int col) const { return m_matrix(row,col); }
138 /** shortcut for m_matrix(row,col);
139 * \sa MatrixBase::operaror(int,int) */
140 inline Scalar& operator() (int row, int col) { return m_matrix(row,col); }
141
142 /** \returns a read-only expression of the transformation matrix */
143 inline const MatrixType& matrix() const { return m_matrix; }
144 /** \returns a writable expression of the transformation matrix */
145 inline MatrixType& matrix() { return m_matrix; }
146
147 /** \returns a read-only expression of the linear (linear) part of the transformation */
148 inline ConstLinearPart linear() const { return m_matrix.template block<Dim,Dim>(0,0); }
149 /** \returns a writable expression of the linear (linear) part of the transformation */
150 inline LinearPart linear() { return m_matrix.template block<Dim,Dim>(0,0); }
151
152 /** \returns a read-only expression of the translation vector of the transformation */
153 inline ConstTranslationPart translation() const { return m_matrix.template block<Dim,1>(0,Dim); }
154 /** \returns a writable expression of the translation vector of the transformation */
155 inline TranslationPart translation() { return m_matrix.template block<Dim,1>(0,Dim); }
156
157 /** \returns an expression of the product between the transform \c *this and a matrix expression \a other
158 *
159 * The right hand side \a other might be either:
160 * \li a vector of size Dim,
161 * \li an homogeneous vector of size Dim+1,
162 * \li a transformation matrix of size Dim+1 x Dim+1.
163 */
164 // note: this function is defined here because some compilers cannot find the respective declaration
165 template<typename OtherDerived>
166 inline const typename ei_transform_product_impl<OtherDerived,_Dim,_Dim+1>::ResultType
167 operator * (const MatrixBase<OtherDerived> &other) const
168 { return ei_transform_product_impl<OtherDerived,Dim,HDim>::run(*this,other.derived()); }
169
170 /** \returns the product expression of a transformation matrix \a a times a transform \a b
171 * The transformation matrix \a a must have a Dim+1 x Dim+1 sizes. */
172 template<typename OtherDerived>
173 friend inline const typename ProductReturnType<OtherDerived,MatrixType>::Type
174 operator * (const MatrixBase<OtherDerived> &a, const Transform &b)
175 { return a.derived() * b.matrix(); }
176
177 /** Contatenates two transformations */
178 inline const Transform
179 operator * (const Transform& other) const
180 { return Transform(m_matrix * other.matrix()); }
181
182 /** \sa MatrixBase::setIdentity() */
183 void setIdentity() { m_matrix.setIdentity(); }
184 static const typename MatrixType::IdentityReturnType Identity()
185 {
186 return MatrixType::Identity();
187 }
188
189 template<typename OtherDerived>
190 inline Transform& scale(const MatrixBase<OtherDerived> &other);
191
192 template<typename OtherDerived>
193 inline Transform& prescale(const MatrixBase<OtherDerived> &other);
194
195 inline Transform& scale(Scalar s);
196 inline Transform& prescale(Scalar s);
197
198 template<typename OtherDerived>
199 inline Transform& translate(const MatrixBase<OtherDerived> &other);
200
201 template<typename OtherDerived>
202 inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);
203
204 template<typename RotationType>
205 inline Transform& rotate(const RotationType& rotation);
206
207 template<typename RotationType>
208 inline Transform& prerotate(const RotationType& rotation);
209
210 Transform& shear(Scalar sx, Scalar sy);
211 Transform& preshear(Scalar sx, Scalar sy);
212
213 inline Transform& operator=(const TranslationType& t);
214 inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
215 inline Transform operator*(const TranslationType& t) const;
216
217 inline Transform& operator=(const ScalingType& t);
218 inline Transform& operator*=(const ScalingType& s) { return scale(s.coeffs()); }
219 inline Transform operator*(const ScalingType& s) const;
220 friend inline Transform operator*(const LinearMatrixType& mat, const Transform& t)
221 {
222 Transform res = t;
223 res.matrix().row(Dim) = t.matrix().row(Dim);
224 res.matrix().template block<Dim,HDim>(0,0) = (mat * t.matrix().template block<Dim,HDim>(0,0)).lazy();
225 return res;
226 }
227
228 template<typename Derived>
229 inline Transform& operator=(const RotationBase<Derived,Dim>& r);
230 template<typename Derived>
231 inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
232 template<typename Derived>
233 inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
234
235 LinearMatrixType rotation() const;
236 template<typename RotationMatrixType, typename ScalingMatrixType>
237 void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
238 template<typename ScalingMatrixType, typename RotationMatrixType>
239 void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;
240
241 template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
242 Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
243 const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
244
245 inline const MatrixType inverse(TransformTraits traits = Affine) const;
246
247 /** \returns a const pointer to the column major internal matrix */
248 const Scalar* data() const { return m_matrix.data(); }
249 /** \returns a non-const pointer to the column major internal matrix */
250 Scalar* data() { return m_matrix.data(); }
251
252 /** \returns \c *this with scalar type casted to \a NewScalarType
253 *
254 * Note that if \a NewScalarType is equal to the current scalar type of \c *this
255 * then this function smartly returns a const reference to \c *this.
256 */
257 template<typename NewScalarType>
258 inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type cast() const
259 { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type(*this); }
260
261 /** Copy constructor with scalar type conversion */
262 template<typename OtherScalarType>
263 inline explicit Transform(const Transform<OtherScalarType,Dim>& other)
264 { m_matrix = other.matrix().template cast<Scalar>(); }
265
266 /** \returns \c true if \c *this is approximately equal to \a other, within the precision
267 * determined by \a prec.
268 *
269 * \sa MatrixBase::isApprox() */
270 bool isApprox(const Transform& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
271 { return m_matrix.isApprox(other.m_matrix, prec); }
272
273 #ifdef EIGEN_TRANSFORM_PLUGIN
274 #include EIGEN_TRANSFORM_PLUGIN
275 #endif
276
277protected:
278
279};
280
281/** \ingroup Geometry_Module */
282typedef Transform<float,2> Transform2f;
283/** \ingroup Geometry_Module */
284typedef Transform<float,3> Transform3f;
285/** \ingroup Geometry_Module */
286typedef Transform<double,2> Transform2d;
287/** \ingroup Geometry_Module */
288typedef Transform<double,3> Transform3d;
289
290/**************************
291*** Optional QT support ***
292**************************/
293
294#ifdef EIGEN_QT_SUPPORT
295/** Initialises \c *this from a QMatrix assuming the dimension is 2.
296 *
297 * This function is available only if the token EIGEN_QT_SUPPORT is defined.
298 */
299template<typename Scalar, int Dim>
300Transform<Scalar,Dim>::Transform(const QMatrix& other)
301{
302 *this = other;
303}
304
305/** Set \c *this from a QMatrix assuming the dimension is 2.
306 *
307 * This function is available only if the token EIGEN_QT_SUPPORT is defined.
308 */
309template<typename Scalar, int Dim>
310Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other)
311{
312 EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
313 m_matrix << other.m11(), other.m21(), other.dx(),
314 other.m12(), other.m22(), other.dy(),
315 0, 0, 1;
316 return *this;
317}
318
319/** \returns a QMatrix from \c *this assuming the dimension is 2.
320 *
321 * \warning this convertion might loss data if \c *this is not affine
322 *
323 * This function is available only if the token EIGEN_QT_SUPPORT is defined.
324 */
325template<typename Scalar, int Dim>
326QMatrix Transform<Scalar,Dim>::toQMatrix(void) const
327{
328 EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
329 return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
330 m_matrix.coeff(0,1), m_matrix.coeff(1,1),
331 m_matrix.coeff(0,2), m_matrix.coeff(1,2));
332}
333
334/** Initialises \c *this from a QTransform assuming the dimension is 2.
335 *
336 * This function is available only if the token EIGEN_QT_SUPPORT is defined.
337 */
338template<typename Scalar, int Dim>
339Transform<Scalar,Dim>::Transform(const QTransform& other)
340{
341 *this = other;
342}
343
344/** Set \c *this from a QTransform assuming the dimension is 2.
345 *
346 * This function is available only if the token EIGEN_QT_SUPPORT is defined.
347 */
348template<typename Scalar, int Dim>
349Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QTransform& other)
350{
351 EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
352 m_matrix << other.m11(), other.m21(), other.dx(),
353 other.m12(), other.m22(), other.dy(),
354 other.m13(), other.m23(), other.m33();
355 return *this;
356}
357
358/** \returns a QTransform from \c *this assuming the dimension is 2.
359 *
360 * This function is available only if the token EIGEN_QT_SUPPORT is defined.
361 */
362template<typename Scalar, int Dim>
363QTransform Transform<Scalar,Dim>::toQTransform(void) const
364{
365 EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
366 return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
367 m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
368 m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
369}
370#endif
371
372/*********************
373*** Procedural API ***
374*********************/
375
376/** Applies on the right the non uniform scale transformation represented
377 * by the vector \a other to \c *this and returns a reference to \c *this.
378 * \sa prescale()
379 */
380template<typename Scalar, int Dim>
381template<typename OtherDerived>
382Transform<Scalar,Dim>&
383Transform<Scalar,Dim>::scale(const MatrixBase<OtherDerived> &other)
384{
385 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
386 linear() = (linear() * other.asDiagonal()).lazy();
387 return *this;
388}
389
390/** Applies on the right a uniform scale of a factor \a c to \c *this
391 * and returns a reference to \c *this.
392 * \sa prescale(Scalar)
393 */
394template<typename Scalar, int Dim>
395inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::scale(Scalar s)
396{
397 linear() *= s;
398 return *this;
399}
400
401/** Applies on the left the non uniform scale transformation represented
402 * by the vector \a other to \c *this and returns a reference to \c *this.
403 * \sa scale()
404 */
405template<typename Scalar, int Dim>
406template<typename OtherDerived>
407Transform<Scalar,Dim>&
408Transform<Scalar,Dim>::prescale(const MatrixBase<OtherDerived> &other)
409{
410 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
411 m_matrix.template block<Dim,HDim>(0,0) = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)).lazy();
412 return *this;
413}
414
415/** Applies on the left a uniform scale of a factor \a c to \c *this
416 * and returns a reference to \c *this.
417 * \sa scale(Scalar)
418 */
419template<typename Scalar, int Dim>
420inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::prescale(Scalar s)
421{
422 m_matrix.template corner<Dim,HDim>(TopLeft) *= s;
423 return *this;
424}
425
426/** Applies on the right the translation matrix represented by the vector \a other
427 * to \c *this and returns a reference to \c *this.
428 * \sa pretranslate()
429 */
430template<typename Scalar, int Dim>
431template<typename OtherDerived>
432Transform<Scalar,Dim>&
433Transform<Scalar,Dim>::translate(const MatrixBase<OtherDerived> &other)
434{
435 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
436 translation() += linear() * other;
437 return *this;
438}
439
440/** Applies on the left the translation matrix represented by the vector \a other
441 * to \c *this and returns a reference to \c *this.
442 * \sa translate()
443 */
444template<typename Scalar, int Dim>
445template<typename OtherDerived>
446Transform<Scalar,Dim>&
447Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other)
448{
449 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
450 translation() += other;
451 return *this;
452}
453
454/** Applies on the right the rotation represented by the rotation \a rotation
455 * to \c *this and returns a reference to \c *this.
456 *
457 * The template parameter \a RotationType is the type of the rotation which
458 * must be known by ei_toRotationMatrix<>.
459 *
460 * Natively supported types includes:
461 * - any scalar (2D),
462 * - a Dim x Dim matrix expression,
463 * - a Quaternion (3D),
464 * - a AngleAxis (3D)
465 *
466 * This mechanism is easily extendable to support user types such as Euler angles,
467 * or a pair of Quaternion for 4D rotations.
468 *
469 * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
470 */
471template<typename Scalar, int Dim>
472template<typename RotationType>
473Transform<Scalar,Dim>&
474Transform<Scalar,Dim>::rotate(const RotationType& rotation)
475{
476 linear() *= ei_toRotationMatrix<Scalar,Dim>(rotation);
477 return *this;
478}
479
480/** Applies on the left the rotation represented by the rotation \a rotation
481 * to \c *this and returns a reference to \c *this.
482 *
483 * See rotate() for further details.
484 *
485 * \sa rotate()
486 */
487template<typename Scalar, int Dim>
488template<typename RotationType>
489Transform<Scalar,Dim>&
490Transform<Scalar,Dim>::prerotate(const RotationType& rotation)
491{
492 m_matrix.template block<Dim,HDim>(0,0) = ei_toRotationMatrix<Scalar,Dim>(rotation)
493 * m_matrix.template block<Dim,HDim>(0,0);
494 return *this;
495}
496
497/** Applies on the right the shear transformation represented
498 * by the vector \a other to \c *this and returns a reference to \c *this.
499 * \warning 2D only.
500 * \sa preshear()
501 */
502template<typename Scalar, int Dim>
503Transform<Scalar,Dim>&
504Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy)
505{
506 EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
507 VectorType tmp = linear().col(0)*sy + linear().col(1);
508 linear() << linear().col(0) + linear().col(1)*sx, tmp;
509 return *this;
510}
511
512/** Applies on the left the shear transformation represented
513 * by the vector \a other to \c *this and returns a reference to \c *this.
514 * \warning 2D only.
515 * \sa shear()
516 */
517template<typename Scalar, int Dim>
518Transform<Scalar,Dim>&
519Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy)
520{
521 EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
522 m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
523 return *this;
524}
525
526/******************************************************
527*** Scaling, Translation and Rotation compatibility ***
528******************************************************/
529
530template<typename Scalar, int Dim>
531inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const TranslationType& t)
532{
533 linear().setIdentity();
534 translation() = t.vector();
535 m_matrix.template block<1,Dim>(Dim,0).setZero();
536 m_matrix(Dim,Dim) = Scalar(1);
537 return *this;
538}
539
540template<typename Scalar, int Dim>
541inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const TranslationType& t) const
542{
543 Transform res = *this;
544 res.translate(t.vector());
545 return res;
546}
547
548template<typename Scalar, int Dim>
549inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const ScalingType& s)
550{
551 m_matrix.setZero();
552 linear().diagonal() = s.coeffs();
553 m_matrix.coeffRef(Dim,Dim) = Scalar(1);
554 return *this;
555}
556
557template<typename Scalar, int Dim>
558inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const ScalingType& s) const
559{
560 Transform res = *this;
561 res.scale(s.coeffs());
562 return res;
563}
564
565template<typename Scalar, int Dim>
566template<typename Derived>
567inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const RotationBase<Derived,Dim>& r)
568{
569 linear() = ei_toRotationMatrix<Scalar,Dim>(r);
570 translation().setZero();
571 m_matrix.template block<1,Dim>(Dim,0).setZero();
572 m_matrix.coeffRef(Dim,Dim) = Scalar(1);
573 return *this;
574}
575
576template<typename Scalar, int Dim>
577template<typename Derived>
578inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const RotationBase<Derived,Dim>& r) const
579{
580 Transform res = *this;
581 res.rotate(r.derived());
582 return res;
583}
584
585/************************
586*** Special functions ***
587************************/
588
589/** \returns the rotation part of the transformation
590 * \nonstableyet
591 *
592 * \svd_module
593 *
594 * \sa computeRotationScaling(), computeScalingRotation(), class SVD
595 */
596template<typename Scalar, int Dim>
597typename Transform<Scalar,Dim>::LinearMatrixType
598Transform<Scalar,Dim>::rotation() const
599{
600 LinearMatrixType result;
601 computeRotationScaling(&result, (LinearMatrixType*)0);
602 return result;
603}
604
605
606/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
607 * not necessarily positive.
608 *
609 * If either pointer is zero, the corresponding computation is skipped.
610 *
611 * \nonstableyet
612 *
613 * \svd_module
614 *
615 * \sa computeScalingRotation(), rotation(), class SVD
616 */
617template<typename Scalar, int Dim>
618template<typename RotationMatrixType, typename ScalingMatrixType>
619void Transform<Scalar,Dim>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
620{
621 JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV);
622 Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
623 Matrix<Scalar, Dim, 1> sv(svd.singularValues());
624 sv.coeffRef(0) *= x;
625 if(scaling)
626 {
627 scaling->noalias() = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint();
628 }
629 if(rotation)
630 {
631 LinearMatrixType m(svd.matrixU());
632 m.col(0) /= x;
633 rotation->noalias() = m * svd.matrixV().adjoint();
634 }
635}
636
637/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
638 * not necessarily positive.
639 *
640 * If either pointer is zero, the corresponding computation is skipped.
641 *
642 * \nonstableyet
643 *
644 * \svd_module
645 *
646 * \sa computeRotationScaling(), rotation(), class SVD
647 */
648template<typename Scalar, int Dim>
649template<typename ScalingMatrixType, typename RotationMatrixType>
650void Transform<Scalar,Dim>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
651{
652 JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV);
653 Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
654 Matrix<Scalar, Dim, 1> sv(svd.singularValues());
655 sv.coeffRef(0) *= x;
656 if(scaling)
657 {
658 scaling->noalias() = svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint();
659 }
660 if(rotation)
661 {
662 LinearMatrixType m(svd.matrixU());
663 m.col(0) /= x;
664 rotation->noalias() = m * svd.matrixV().adjoint();
665 }
666}
667
668/** Convenient method to set \c *this from a position, orientation and scale
669 * of a 3D object.
670 */
671template<typename Scalar, int Dim>
672template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
673Transform<Scalar,Dim>&
674Transform<Scalar,Dim>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
675 const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
676{
677 linear() = ei_toRotationMatrix<Scalar,Dim>(orientation);
678 linear() *= scale.asDiagonal();
679 translation() = position;
680 m_matrix.template block<1,Dim>(Dim,0).setZero();
681 m_matrix(Dim,Dim) = Scalar(1);
682 return *this;
683}
684
685/** \nonstableyet
686 *
687 * \returns the inverse transformation matrix according to some given knowledge
688 * on \c *this.
689 *
690 * \param traits allows to optimize the inversion process when the transformion
691 * is known to be not a general transformation. The possible values are:
692 * - Projective if the transformation is not necessarily affine, i.e., if the
693 * last row is not guaranteed to be [0 ... 0 1]
694 * - Affine is the default, the last row is assumed to be [0 ... 0 1]
695 * - Isometry if the transformation is only a concatenations of translations
696 * and rotations.
697 *
698 * \warning unless \a traits is always set to NoShear or NoScaling, this function
699 * requires the generic inverse method of MatrixBase defined in the LU module. If
700 * you forget to include this module, then you will get hard to debug linking errors.
701 *
702 * \sa MatrixBase::inverse()
703 */
704template<typename Scalar, int Dim>
705inline const typename Transform<Scalar,Dim>::MatrixType
706Transform<Scalar,Dim>::inverse(TransformTraits traits) const
707{
708 if (traits == Projective)
709 {
710 return m_matrix.inverse();
711 }
712 else
713 {
714 MatrixType res;
715 if (traits == Affine)
716 {
717 res.template corner<Dim,Dim>(TopLeft) = linear().inverse();
718 }
719 else if (traits == Isometry)
720 {
721 res.template corner<Dim,Dim>(TopLeft) = linear().transpose();
722 }
723 else
724 {
725 ei_assert("invalid traits value in Transform::inverse()");
726 }
727 // translation and remaining parts
728 res.template corner<Dim,1>(TopRight) = - res.template corner<Dim,Dim>(TopLeft) * translation();
729 res.template corner<1,Dim>(BottomLeft).setZero();
730 res.coeffRef(Dim,Dim) = Scalar(1);
731 return res;
732 }
733}
734
735/*****************************************************
736*** Specializations of operator* with a MatrixBase ***
737*****************************************************/
738
739template<typename Other, int Dim, int HDim>
740struct ei_transform_product_impl<Other,Dim,HDim, HDim,HDim>
741{
742 typedef Transform<typename Other::Scalar,Dim> TransformType;
743 typedef typename TransformType::MatrixType MatrixType;
744 typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
745 static ResultType run(const TransformType& tr, const Other& other)
746 { return tr.matrix() * other; }
747};
748
749template<typename Other, int Dim, int HDim>
750struct ei_transform_product_impl<Other,Dim,HDim, Dim,Dim>
751{
752 typedef Transform<typename Other::Scalar,Dim> TransformType;
753 typedef typename TransformType::MatrixType MatrixType;
754 typedef TransformType ResultType;
755 static ResultType run(const TransformType& tr, const Other& other)
756 {
757 TransformType res;
758 res.translation() = tr.translation();
759 res.matrix().row(Dim) = tr.matrix().row(Dim);
760 res.linear() = (tr.linear() * other).lazy();
761 return res;
762 }
763};
764
765template<typename Other, int Dim, int HDim>
766struct ei_transform_product_impl<Other,Dim,HDim, HDim,1>
767{
768 typedef Transform<typename Other::Scalar,Dim> TransformType;
769 typedef typename TransformType::MatrixType MatrixType;
770 typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
771 static ResultType run(const TransformType& tr, const Other& other)
772 { return tr.matrix() * other; }
773};
774
775template<typename Other, int Dim, int HDim>
776struct ei_transform_product_impl<Other,Dim,HDim, Dim,1>
777{
778 typedef typename Other::Scalar Scalar;
779 typedef Transform<Scalar,Dim> TransformType;
780 typedef Matrix<Scalar,Dim,1> ResultType;
781 static ResultType run(const TransformType& tr, const Other& other)
782 { return ((tr.linear() * other) + tr.translation())
783 * (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); }
784};
785
786} // end namespace Eigen
Note: See TracBrowser for help on using the repository browser.