| 1 | // This file is part of Eigen, a lightweight C++ template library
|
|---|
| 2 | // for linear algebra.
|
|---|
| 3 | //
|
|---|
| 4 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|---|
| 5 | // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|---|
| 6 | //
|
|---|
| 7 | // This Source Code Form is subject to the terms of the Mozilla
|
|---|
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
|---|
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|---|
| 10 |
|
|---|
| 11 | #ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H
|
|---|
| 12 | #define EIGEN_HOUSEHOLDER_SEQUENCE_H
|
|---|
| 13 |
|
|---|
| 14 | namespace Eigen {
|
|---|
| 15 |
|
|---|
| 16 | /** \ingroup Householder_Module
|
|---|
| 17 | * \householder_module
|
|---|
| 18 | * \class HouseholderSequence
|
|---|
| 19 | * \brief Sequence of Householder reflections acting on subspaces with decreasing size
|
|---|
| 20 | * \tparam VectorsType type of matrix containing the Householder vectors
|
|---|
| 21 | * \tparam CoeffsType type of vector containing the Householder coefficients
|
|---|
| 22 | * \tparam Side either OnTheLeft (the default) or OnTheRight
|
|---|
| 23 | *
|
|---|
| 24 | * This class represents a product sequence of Householder reflections where the first Householder reflection
|
|---|
| 25 | * acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by
|
|---|
| 26 | * the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace
|
|---|
| 27 | * spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but
|
|---|
| 28 | * one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections
|
|---|
| 29 | * are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods
|
|---|
| 30 | * HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(),
|
|---|
| 31 | * and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence.
|
|---|
| 32 | *
|
|---|
| 33 | * More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the
|
|---|
| 34 | * form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i
|
|---|
| 35 | * v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$
|
|---|
| 36 | * v_i \f$ is a vector of the form
|
|---|
| 37 | * \f[
|
|---|
| 38 | * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ].
|
|---|
| 39 | * \f]
|
|---|
| 40 | * The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector.
|
|---|
| 41 | *
|
|---|
| 42 | * Typical usages are listed below, where H is a HouseholderSequence:
|
|---|
| 43 | * \code
|
|---|
| 44 | * A.applyOnTheRight(H); // A = A * H
|
|---|
| 45 | * A.applyOnTheLeft(H); // A = H * A
|
|---|
| 46 | * A.applyOnTheRight(H.adjoint()); // A = A * H^*
|
|---|
| 47 | * A.applyOnTheLeft(H.adjoint()); // A = H^* * A
|
|---|
| 48 | * MatrixXd Q = H; // conversion to a dense matrix
|
|---|
| 49 | * \endcode
|
|---|
| 50 | * In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators.
|
|---|
| 51 | *
|
|---|
| 52 | * See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example.
|
|---|
| 53 | *
|
|---|
| 54 | * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
|
|---|
| 55 | */
|
|---|
| 56 |
|
|---|
| 57 | namespace internal {
|
|---|
| 58 |
|
|---|
| 59 | template<typename VectorsType, typename CoeffsType, int Side>
|
|---|
| 60 | struct traits<HouseholderSequence<VectorsType,CoeffsType,Side> >
|
|---|
| 61 | {
|
|---|
| 62 | typedef typename VectorsType::Scalar Scalar;
|
|---|
| 63 | typedef typename VectorsType::Index Index;
|
|---|
| 64 | typedef typename VectorsType::StorageKind StorageKind;
|
|---|
| 65 | enum {
|
|---|
| 66 | RowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::RowsAtCompileTime
|
|---|
| 67 | : traits<VectorsType>::ColsAtCompileTime,
|
|---|
| 68 | ColsAtCompileTime = RowsAtCompileTime,
|
|---|
| 69 | MaxRowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::MaxRowsAtCompileTime
|
|---|
| 70 | : traits<VectorsType>::MaxColsAtCompileTime,
|
|---|
| 71 | MaxColsAtCompileTime = MaxRowsAtCompileTime,
|
|---|
| 72 | Flags = 0
|
|---|
| 73 | };
|
|---|
| 74 | };
|
|---|
| 75 |
|
|---|
| 76 | template<typename VectorsType, typename CoeffsType, int Side>
|
|---|
| 77 | struct hseq_side_dependent_impl
|
|---|
| 78 | {
|
|---|
| 79 | typedef Block<const VectorsType, Dynamic, 1> EssentialVectorType;
|
|---|
| 80 | typedef HouseholderSequence<VectorsType, CoeffsType, OnTheLeft> HouseholderSequenceType;
|
|---|
| 81 | typedef typename VectorsType::Index Index;
|
|---|
| 82 | static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k)
|
|---|
| 83 | {
|
|---|
| 84 | Index start = k+1+h.m_shift;
|
|---|
| 85 | return Block<const VectorsType,Dynamic,1>(h.m_vectors, start, k, h.rows()-start, 1);
|
|---|
| 86 | }
|
|---|
| 87 | };
|
|---|
| 88 |
|
|---|
| 89 | template<typename VectorsType, typename CoeffsType>
|
|---|
| 90 | struct hseq_side_dependent_impl<VectorsType, CoeffsType, OnTheRight>
|
|---|
| 91 | {
|
|---|
| 92 | typedef Transpose<Block<const VectorsType, 1, Dynamic> > EssentialVectorType;
|
|---|
| 93 | typedef HouseholderSequence<VectorsType, CoeffsType, OnTheRight> HouseholderSequenceType;
|
|---|
| 94 | typedef typename VectorsType::Index Index;
|
|---|
| 95 | static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k)
|
|---|
| 96 | {
|
|---|
| 97 | Index start = k+1+h.m_shift;
|
|---|
| 98 | return Block<const VectorsType,1,Dynamic>(h.m_vectors, k, start, 1, h.rows()-start).transpose();
|
|---|
| 99 | }
|
|---|
| 100 | };
|
|---|
| 101 |
|
|---|
| 102 | template<typename OtherScalarType, typename MatrixType> struct matrix_type_times_scalar_type
|
|---|
| 103 | {
|
|---|
| 104 | typedef typename scalar_product_traits<OtherScalarType, typename MatrixType::Scalar>::ReturnType
|
|---|
| 105 | ResultScalar;
|
|---|
| 106 | typedef Matrix<ResultScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
|
|---|
| 107 | 0, MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime> Type;
|
|---|
| 108 | };
|
|---|
| 109 |
|
|---|
| 110 | } // end namespace internal
|
|---|
| 111 |
|
|---|
| 112 | template<typename VectorsType, typename CoeffsType, int Side> class HouseholderSequence
|
|---|
| 113 | : public EigenBase<HouseholderSequence<VectorsType,CoeffsType,Side> >
|
|---|
| 114 | {
|
|---|
| 115 | typedef typename internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::EssentialVectorType EssentialVectorType;
|
|---|
| 116 |
|
|---|
| 117 | public:
|
|---|
| 118 | enum {
|
|---|
| 119 | RowsAtCompileTime = internal::traits<HouseholderSequence>::RowsAtCompileTime,
|
|---|
| 120 | ColsAtCompileTime = internal::traits<HouseholderSequence>::ColsAtCompileTime,
|
|---|
| 121 | MaxRowsAtCompileTime = internal::traits<HouseholderSequence>::MaxRowsAtCompileTime,
|
|---|
| 122 | MaxColsAtCompileTime = internal::traits<HouseholderSequence>::MaxColsAtCompileTime
|
|---|
| 123 | };
|
|---|
| 124 | typedef typename internal::traits<HouseholderSequence>::Scalar Scalar;
|
|---|
| 125 | typedef typename VectorsType::Index Index;
|
|---|
| 126 |
|
|---|
| 127 | typedef HouseholderSequence<
|
|---|
| 128 | typename internal::conditional<NumTraits<Scalar>::IsComplex,
|
|---|
| 129 | typename internal::remove_all<typename VectorsType::ConjugateReturnType>::type,
|
|---|
| 130 | VectorsType>::type,
|
|---|
| 131 | typename internal::conditional<NumTraits<Scalar>::IsComplex,
|
|---|
| 132 | typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type,
|
|---|
| 133 | CoeffsType>::type,
|
|---|
| 134 | Side
|
|---|
| 135 | > ConjugateReturnType;
|
|---|
| 136 |
|
|---|
| 137 | /** \brief Constructor.
|
|---|
| 138 | * \param[in] v %Matrix containing the essential parts of the Householder vectors
|
|---|
| 139 | * \param[in] h Vector containing the Householder coefficients
|
|---|
| 140 | *
|
|---|
| 141 | * Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The
|
|---|
| 142 | * i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th
|
|---|
| 143 | * Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the
|
|---|
| 144 | * i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many
|
|---|
| 145 | * Householder reflections as there are columns.
|
|---|
| 146 | *
|
|---|
| 147 | * \note The %HouseholderSequence object stores \p v and \p h by reference.
|
|---|
| 148 | *
|
|---|
| 149 | * Example: \include HouseholderSequence_HouseholderSequence.cpp
|
|---|
| 150 | * Output: \verbinclude HouseholderSequence_HouseholderSequence.out
|
|---|
| 151 | *
|
|---|
| 152 | * \sa setLength(), setShift()
|
|---|
| 153 | */
|
|---|
| 154 | HouseholderSequence(const VectorsType& v, const CoeffsType& h)
|
|---|
| 155 | : m_vectors(v), m_coeffs(h), m_trans(false), m_length(v.diagonalSize()),
|
|---|
| 156 | m_shift(0)
|
|---|
| 157 | {
|
|---|
| 158 | }
|
|---|
| 159 |
|
|---|
| 160 | /** \brief Copy constructor. */
|
|---|
| 161 | HouseholderSequence(const HouseholderSequence& other)
|
|---|
| 162 | : m_vectors(other.m_vectors),
|
|---|
| 163 | m_coeffs(other.m_coeffs),
|
|---|
| 164 | m_trans(other.m_trans),
|
|---|
| 165 | m_length(other.m_length),
|
|---|
| 166 | m_shift(other.m_shift)
|
|---|
| 167 | {
|
|---|
| 168 | }
|
|---|
| 169 |
|
|---|
| 170 | /** \brief Number of rows of transformation viewed as a matrix.
|
|---|
| 171 | * \returns Number of rows
|
|---|
| 172 | * \details This equals the dimension of the space that the transformation acts on.
|
|---|
| 173 | */
|
|---|
| 174 | Index rows() const { return Side==OnTheLeft ? m_vectors.rows() : m_vectors.cols(); }
|
|---|
| 175 |
|
|---|
| 176 | /** \brief Number of columns of transformation viewed as a matrix.
|
|---|
| 177 | * \returns Number of columns
|
|---|
| 178 | * \details This equals the dimension of the space that the transformation acts on.
|
|---|
| 179 | */
|
|---|
| 180 | Index cols() const { return rows(); }
|
|---|
| 181 |
|
|---|
| 182 | /** \brief Essential part of a Householder vector.
|
|---|
| 183 | * \param[in] k Index of Householder reflection
|
|---|
| 184 | * \returns Vector containing non-trivial entries of k-th Householder vector
|
|---|
| 185 | *
|
|---|
| 186 | * This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of
|
|---|
| 187 | * length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector
|
|---|
| 188 | * \f[
|
|---|
| 189 | * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ].
|
|---|
| 190 | * \f]
|
|---|
| 191 | * The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v
|
|---|
| 192 | * passed to the constructor.
|
|---|
| 193 | *
|
|---|
| 194 | * \sa setShift(), shift()
|
|---|
| 195 | */
|
|---|
| 196 | const EssentialVectorType essentialVector(Index k) const
|
|---|
| 197 | {
|
|---|
| 198 | eigen_assert(k >= 0 && k < m_length);
|
|---|
| 199 | return internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::essentialVector(*this, k);
|
|---|
| 200 | }
|
|---|
| 201 |
|
|---|
| 202 | /** \brief %Transpose of the Householder sequence. */
|
|---|
| 203 | HouseholderSequence transpose() const
|
|---|
| 204 | {
|
|---|
| 205 | return HouseholderSequence(*this).setTrans(!m_trans);
|
|---|
| 206 | }
|
|---|
| 207 |
|
|---|
| 208 | /** \brief Complex conjugate of the Householder sequence. */
|
|---|
| 209 | ConjugateReturnType conjugate() const
|
|---|
| 210 | {
|
|---|
| 211 | return ConjugateReturnType(m_vectors.conjugate(), m_coeffs.conjugate())
|
|---|
| 212 | .setTrans(m_trans)
|
|---|
| 213 | .setLength(m_length)
|
|---|
| 214 | .setShift(m_shift);
|
|---|
| 215 | }
|
|---|
| 216 |
|
|---|
| 217 | /** \brief Adjoint (conjugate transpose) of the Householder sequence. */
|
|---|
| 218 | ConjugateReturnType adjoint() const
|
|---|
| 219 | {
|
|---|
| 220 | return conjugate().setTrans(!m_trans);
|
|---|
| 221 | }
|
|---|
| 222 |
|
|---|
| 223 | /** \brief Inverse of the Householder sequence (equals the adjoint). */
|
|---|
| 224 | ConjugateReturnType inverse() const { return adjoint(); }
|
|---|
| 225 |
|
|---|
| 226 | /** \internal */
|
|---|
| 227 | template<typename DestType> inline void evalTo(DestType& dst) const
|
|---|
| 228 | {
|
|---|
| 229 | Matrix<Scalar, DestType::RowsAtCompileTime, 1,
|
|---|
| 230 | AutoAlign|ColMajor, DestType::MaxRowsAtCompileTime, 1> workspace(rows());
|
|---|
| 231 | evalTo(dst, workspace);
|
|---|
| 232 | }
|
|---|
| 233 |
|
|---|
| 234 | /** \internal */
|
|---|
| 235 | template<typename Dest, typename Workspace>
|
|---|
| 236 | void evalTo(Dest& dst, Workspace& workspace) const
|
|---|
| 237 | {
|
|---|
| 238 | workspace.resize(rows());
|
|---|
| 239 | Index vecs = m_length;
|
|---|
| 240 | const typename Dest::Scalar *dst_data = internal::extract_data(dst);
|
|---|
| 241 | if( internal::is_same<typename internal::remove_all<VectorsType>::type,Dest>::value
|
|---|
| 242 | && dst_data!=0 && dst_data == internal::extract_data(m_vectors))
|
|---|
| 243 | {
|
|---|
| 244 | // in-place
|
|---|
| 245 | dst.diagonal().setOnes();
|
|---|
| 246 | dst.template triangularView<StrictlyUpper>().setZero();
|
|---|
| 247 | for(Index k = vecs-1; k >= 0; --k)
|
|---|
| 248 | {
|
|---|
| 249 | Index cornerSize = rows() - k - m_shift;
|
|---|
| 250 | if(m_trans)
|
|---|
| 251 | dst.bottomRightCorner(cornerSize, cornerSize)
|
|---|
| 252 | .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data());
|
|---|
| 253 | else
|
|---|
| 254 | dst.bottomRightCorner(cornerSize, cornerSize)
|
|---|
| 255 | .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data());
|
|---|
| 256 |
|
|---|
| 257 | // clear the off diagonal vector
|
|---|
| 258 | dst.col(k).tail(rows()-k-1).setZero();
|
|---|
| 259 | }
|
|---|
| 260 | // clear the remaining columns if needed
|
|---|
| 261 | for(Index k = 0; k<cols()-vecs ; ++k)
|
|---|
| 262 | dst.col(k).tail(rows()-k-1).setZero();
|
|---|
| 263 | }
|
|---|
| 264 | else
|
|---|
| 265 | {
|
|---|
| 266 | dst.setIdentity(rows(), rows());
|
|---|
| 267 | for(Index k = vecs-1; k >= 0; --k)
|
|---|
| 268 | {
|
|---|
| 269 | Index cornerSize = rows() - k - m_shift;
|
|---|
| 270 | if(m_trans)
|
|---|
| 271 | dst.bottomRightCorner(cornerSize, cornerSize)
|
|---|
| 272 | .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0));
|
|---|
| 273 | else
|
|---|
| 274 | dst.bottomRightCorner(cornerSize, cornerSize)
|
|---|
| 275 | .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0));
|
|---|
| 276 | }
|
|---|
| 277 | }
|
|---|
| 278 | }
|
|---|
| 279 |
|
|---|
| 280 | /** \internal */
|
|---|
| 281 | template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const
|
|---|
| 282 | {
|
|---|
| 283 | Matrix<Scalar,1,Dest::RowsAtCompileTime,RowMajor,1,Dest::MaxRowsAtCompileTime> workspace(dst.rows());
|
|---|
| 284 | applyThisOnTheRight(dst, workspace);
|
|---|
| 285 | }
|
|---|
| 286 |
|
|---|
| 287 | /** \internal */
|
|---|
| 288 | template<typename Dest, typename Workspace>
|
|---|
| 289 | inline void applyThisOnTheRight(Dest& dst, Workspace& workspace) const
|
|---|
| 290 | {
|
|---|
| 291 | workspace.resize(dst.rows());
|
|---|
| 292 | for(Index k = 0; k < m_length; ++k)
|
|---|
| 293 | {
|
|---|
| 294 | Index actual_k = m_trans ? m_length-k-1 : k;
|
|---|
| 295 | dst.rightCols(rows()-m_shift-actual_k)
|
|---|
| 296 | .applyHouseholderOnTheRight(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
|
|---|
| 297 | }
|
|---|
| 298 | }
|
|---|
| 299 |
|
|---|
| 300 | /** \internal */
|
|---|
| 301 | template<typename Dest> inline void applyThisOnTheLeft(Dest& dst) const
|
|---|
| 302 | {
|
|---|
| 303 | Matrix<Scalar,1,Dest::ColsAtCompileTime,RowMajor,1,Dest::MaxColsAtCompileTime> workspace(dst.cols());
|
|---|
| 304 | applyThisOnTheLeft(dst, workspace);
|
|---|
| 305 | }
|
|---|
| 306 |
|
|---|
| 307 | /** \internal */
|
|---|
| 308 | template<typename Dest, typename Workspace>
|
|---|
| 309 | inline void applyThisOnTheLeft(Dest& dst, Workspace& workspace) const
|
|---|
| 310 | {
|
|---|
| 311 | workspace.resize(dst.cols());
|
|---|
| 312 | for(Index k = 0; k < m_length; ++k)
|
|---|
| 313 | {
|
|---|
| 314 | Index actual_k = m_trans ? k : m_length-k-1;
|
|---|
| 315 | dst.bottomRows(rows()-m_shift-actual_k)
|
|---|
| 316 | .applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
|
|---|
| 317 | }
|
|---|
| 318 | }
|
|---|
| 319 |
|
|---|
| 320 | /** \brief Computes the product of a Householder sequence with a matrix.
|
|---|
| 321 | * \param[in] other %Matrix being multiplied.
|
|---|
| 322 | * \returns Expression object representing the product.
|
|---|
| 323 | *
|
|---|
| 324 | * This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this
|
|---|
| 325 | * and \f$ M \f$ is the matrix \p other.
|
|---|
| 326 | */
|
|---|
| 327 | template<typename OtherDerived>
|
|---|
| 328 | typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other) const
|
|---|
| 329 | {
|
|---|
| 330 | typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type
|
|---|
| 331 | res(other.template cast<typename internal::matrix_type_times_scalar_type<Scalar,OtherDerived>::ResultScalar>());
|
|---|
| 332 | applyThisOnTheLeft(res);
|
|---|
| 333 | return res;
|
|---|
| 334 | }
|
|---|
| 335 |
|
|---|
| 336 | template<typename _VectorsType, typename _CoeffsType, int _Side> friend struct internal::hseq_side_dependent_impl;
|
|---|
| 337 |
|
|---|
| 338 | /** \brief Sets the length of the Householder sequence.
|
|---|
| 339 | * \param [in] length New value for the length.
|
|---|
| 340 | *
|
|---|
| 341 | * By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set
|
|---|
| 342 | * to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that
|
|---|
| 343 | * is smaller. After this function is called, the length equals \p length.
|
|---|
| 344 | *
|
|---|
| 345 | * \sa length()
|
|---|
| 346 | */
|
|---|
| 347 | HouseholderSequence& setLength(Index length)
|
|---|
| 348 | {
|
|---|
| 349 | m_length = length;
|
|---|
| 350 | return *this;
|
|---|
| 351 | }
|
|---|
| 352 |
|
|---|
| 353 | /** \brief Sets the shift of the Householder sequence.
|
|---|
| 354 | * \param [in] shift New value for the shift.
|
|---|
| 355 | *
|
|---|
| 356 | * By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th
|
|---|
| 357 | * column of the matrix \p v passed to the constructor corresponds to the i-th Householder
|
|---|
| 358 | * reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}}
|
|---|
| 359 | * H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th
|
|---|
| 360 | * Householder reflection.
|
|---|
| 361 | *
|
|---|
| 362 | * \sa shift()
|
|---|
| 363 | */
|
|---|
| 364 | HouseholderSequence& setShift(Index shift)
|
|---|
| 365 | {
|
|---|
| 366 | m_shift = shift;
|
|---|
| 367 | return *this;
|
|---|
| 368 | }
|
|---|
| 369 |
|
|---|
| 370 | Index length() const { return m_length; } /**< \brief Returns the length of the Householder sequence. */
|
|---|
| 371 | Index shift() const { return m_shift; } /**< \brief Returns the shift of the Householder sequence. */
|
|---|
| 372 |
|
|---|
| 373 | /* Necessary for .adjoint() and .conjugate() */
|
|---|
| 374 | template <typename VectorsType2, typename CoeffsType2, int Side2> friend class HouseholderSequence;
|
|---|
| 375 |
|
|---|
| 376 | protected:
|
|---|
| 377 |
|
|---|
| 378 | /** \brief Sets the transpose flag.
|
|---|
| 379 | * \param [in] trans New value of the transpose flag.
|
|---|
| 380 | *
|
|---|
| 381 | * By default, the transpose flag is not set. If the transpose flag is set, then this object represents
|
|---|
| 382 | * \f$ H^T = H_{n-1}^T \ldots H_1^T H_0^T \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$.
|
|---|
| 383 | *
|
|---|
| 384 | * \sa trans()
|
|---|
| 385 | */
|
|---|
| 386 | HouseholderSequence& setTrans(bool trans)
|
|---|
| 387 | {
|
|---|
| 388 | m_trans = trans;
|
|---|
| 389 | return *this;
|
|---|
| 390 | }
|
|---|
| 391 |
|
|---|
| 392 | bool trans() const { return m_trans; } /**< \brief Returns the transpose flag. */
|
|---|
| 393 |
|
|---|
| 394 | typename VectorsType::Nested m_vectors;
|
|---|
| 395 | typename CoeffsType::Nested m_coeffs;
|
|---|
| 396 | bool m_trans;
|
|---|
| 397 | Index m_length;
|
|---|
| 398 | Index m_shift;
|
|---|
| 399 | };
|
|---|
| 400 |
|
|---|
| 401 | /** \brief Computes the product of a matrix with a Householder sequence.
|
|---|
| 402 | * \param[in] other %Matrix being multiplied.
|
|---|
| 403 | * \param[in] h %HouseholderSequence being multiplied.
|
|---|
| 404 | * \returns Expression object representing the product.
|
|---|
| 405 | *
|
|---|
| 406 | * This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the
|
|---|
| 407 | * Householder sequence represented by \p h.
|
|---|
| 408 | */
|
|---|
| 409 | template<typename OtherDerived, typename VectorsType, typename CoeffsType, int Side>
|
|---|
| 410 | typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other, const HouseholderSequence<VectorsType,CoeffsType,Side>& h)
|
|---|
| 411 | {
|
|---|
| 412 | typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type
|
|---|
| 413 | res(other.template cast<typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::ResultScalar>());
|
|---|
| 414 | h.applyThisOnTheRight(res);
|
|---|
| 415 | return res;
|
|---|
| 416 | }
|
|---|
| 417 |
|
|---|
| 418 | /** \ingroup Householder_Module \householder_module
|
|---|
| 419 | * \brief Convenience function for constructing a Householder sequence.
|
|---|
| 420 | * \returns A HouseholderSequence constructed from the specified arguments.
|
|---|
| 421 | */
|
|---|
| 422 | template<typename VectorsType, typename CoeffsType>
|
|---|
| 423 | HouseholderSequence<VectorsType,CoeffsType> householderSequence(const VectorsType& v, const CoeffsType& h)
|
|---|
| 424 | {
|
|---|
| 425 | return HouseholderSequence<VectorsType,CoeffsType,OnTheLeft>(v, h);
|
|---|
| 426 | }
|
|---|
| 427 |
|
|---|
| 428 | /** \ingroup Householder_Module \householder_module
|
|---|
| 429 | * \brief Convenience function for constructing a Householder sequence.
|
|---|
| 430 | * \returns A HouseholderSequence constructed from the specified arguments.
|
|---|
| 431 | * \details This function differs from householderSequence() in that the template argument \p OnTheSide of
|
|---|
| 432 | * the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft.
|
|---|
| 433 | */
|
|---|
| 434 | template<typename VectorsType, typename CoeffsType>
|
|---|
| 435 | HouseholderSequence<VectorsType,CoeffsType,OnTheRight> rightHouseholderSequence(const VectorsType& v, const CoeffsType& h)
|
|---|
| 436 | {
|
|---|
| 437 | return HouseholderSequence<VectorsType,CoeffsType,OnTheRight>(v, h);
|
|---|
| 438 | }
|
|---|
| 439 |
|
|---|
| 440 | } // end namespace Eigen
|
|---|
| 441 |
|
|---|
| 442 | #endif // EIGEN_HOUSEHOLDER_SEQUENCE_H
|
|---|