| 1 | // This file is part of Eigen, a lightweight C++ template library
 | 
|---|
| 2 | // for linear algebra.
 | 
|---|
| 3 | //
 | 
|---|
| 4 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
 | 
|---|
| 5 | // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
 | 
|---|
| 6 | //
 | 
|---|
| 7 | // This Source Code Form is subject to the terms of the Mozilla
 | 
|---|
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed
 | 
|---|
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | 
|---|
| 10 | 
 | 
|---|
| 11 | #ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H
 | 
|---|
| 12 | #define EIGEN_HOUSEHOLDER_SEQUENCE_H
 | 
|---|
| 13 | 
 | 
|---|
| 14 | namespace Eigen { 
 | 
|---|
| 15 | 
 | 
|---|
| 16 | /** \ingroup Householder_Module
 | 
|---|
| 17 |   * \householder_module
 | 
|---|
| 18 |   * \class HouseholderSequence
 | 
|---|
| 19 |   * \brief Sequence of Householder reflections acting on subspaces with decreasing size
 | 
|---|
| 20 |   * \tparam VectorsType type of matrix containing the Householder vectors
 | 
|---|
| 21 |   * \tparam CoeffsType  type of vector containing the Householder coefficients
 | 
|---|
| 22 |   * \tparam Side        either OnTheLeft (the default) or OnTheRight
 | 
|---|
| 23 |   *
 | 
|---|
| 24 |   * This class represents a product sequence of Householder reflections where the first Householder reflection
 | 
|---|
| 25 |   * acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by
 | 
|---|
| 26 |   * the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace
 | 
|---|
| 27 |   * spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but
 | 
|---|
| 28 |   * one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections
 | 
|---|
| 29 |   * are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods
 | 
|---|
| 30 |   * HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(),
 | 
|---|
| 31 |   * and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence.
 | 
|---|
| 32 |   *
 | 
|---|
| 33 |   * More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the
 | 
|---|
| 34 |   * form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i
 | 
|---|
| 35 |   * v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$
 | 
|---|
| 36 |   * v_i \f$ is a vector of the form
 | 
|---|
| 37 |   * \f[ 
 | 
|---|
| 38 |   * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. 
 | 
|---|
| 39 |   * \f]
 | 
|---|
| 40 |   * The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector.
 | 
|---|
| 41 |   *
 | 
|---|
| 42 |   * Typical usages are listed below, where H is a HouseholderSequence:
 | 
|---|
| 43 |   * \code
 | 
|---|
| 44 |   * A.applyOnTheRight(H);             // A = A * H
 | 
|---|
| 45 |   * A.applyOnTheLeft(H);              // A = H * A
 | 
|---|
| 46 |   * A.applyOnTheRight(H.adjoint());   // A = A * H^*
 | 
|---|
| 47 |   * A.applyOnTheLeft(H.adjoint());    // A = H^* * A
 | 
|---|
| 48 |   * MatrixXd Q = H;                   // conversion to a dense matrix
 | 
|---|
| 49 |   * \endcode
 | 
|---|
| 50 |   * In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators.
 | 
|---|
| 51 |   *
 | 
|---|
| 52 |   * See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example.
 | 
|---|
| 53 |   *
 | 
|---|
| 54 |   * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
 | 
|---|
| 55 |   */
 | 
|---|
| 56 | 
 | 
|---|
| 57 | namespace internal {
 | 
|---|
| 58 | 
 | 
|---|
| 59 | template<typename VectorsType, typename CoeffsType, int Side>
 | 
|---|
| 60 | struct traits<HouseholderSequence<VectorsType,CoeffsType,Side> >
 | 
|---|
| 61 | {
 | 
|---|
| 62 |   typedef typename VectorsType::Scalar Scalar;
 | 
|---|
| 63 |   typedef typename VectorsType::Index Index;
 | 
|---|
| 64 |   typedef typename VectorsType::StorageKind StorageKind;
 | 
|---|
| 65 |   enum {
 | 
|---|
| 66 |     RowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::RowsAtCompileTime
 | 
|---|
| 67 |                                         : traits<VectorsType>::ColsAtCompileTime,
 | 
|---|
| 68 |     ColsAtCompileTime = RowsAtCompileTime,
 | 
|---|
| 69 |     MaxRowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::MaxRowsAtCompileTime
 | 
|---|
| 70 |                                            : traits<VectorsType>::MaxColsAtCompileTime,
 | 
|---|
| 71 |     MaxColsAtCompileTime = MaxRowsAtCompileTime,
 | 
|---|
| 72 |     Flags = 0
 | 
|---|
| 73 |   };
 | 
|---|
| 74 | };
 | 
|---|
| 75 | 
 | 
|---|
| 76 | template<typename VectorsType, typename CoeffsType, int Side>
 | 
|---|
| 77 | struct hseq_side_dependent_impl
 | 
|---|
| 78 | {
 | 
|---|
| 79 |   typedef Block<const VectorsType, Dynamic, 1> EssentialVectorType;
 | 
|---|
| 80 |   typedef HouseholderSequence<VectorsType, CoeffsType, OnTheLeft> HouseholderSequenceType;
 | 
|---|
| 81 |   typedef typename VectorsType::Index Index;
 | 
|---|
| 82 |   static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k)
 | 
|---|
| 83 |   {
 | 
|---|
| 84 |     Index start = k+1+h.m_shift;
 | 
|---|
| 85 |     return Block<const VectorsType,Dynamic,1>(h.m_vectors, start, k, h.rows()-start, 1);
 | 
|---|
| 86 |   }
 | 
|---|
| 87 | };
 | 
|---|
| 88 | 
 | 
|---|
| 89 | template<typename VectorsType, typename CoeffsType>
 | 
|---|
| 90 | struct hseq_side_dependent_impl<VectorsType, CoeffsType, OnTheRight>
 | 
|---|
| 91 | {
 | 
|---|
| 92 |   typedef Transpose<Block<const VectorsType, 1, Dynamic> > EssentialVectorType;
 | 
|---|
| 93 |   typedef HouseholderSequence<VectorsType, CoeffsType, OnTheRight> HouseholderSequenceType;
 | 
|---|
| 94 |   typedef typename VectorsType::Index Index;
 | 
|---|
| 95 |   static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k)
 | 
|---|
| 96 |   {
 | 
|---|
| 97 |     Index start = k+1+h.m_shift;
 | 
|---|
| 98 |     return Block<const VectorsType,1,Dynamic>(h.m_vectors, k, start, 1, h.rows()-start).transpose();
 | 
|---|
| 99 |   }
 | 
|---|
| 100 | };
 | 
|---|
| 101 | 
 | 
|---|
| 102 | template<typename OtherScalarType, typename MatrixType> struct matrix_type_times_scalar_type
 | 
|---|
| 103 | {
 | 
|---|
| 104 |   typedef typename scalar_product_traits<OtherScalarType, typename MatrixType::Scalar>::ReturnType
 | 
|---|
| 105 |     ResultScalar;
 | 
|---|
| 106 |   typedef Matrix<ResultScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
 | 
|---|
| 107 |                  0, MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime> Type;
 | 
|---|
| 108 | };
 | 
|---|
| 109 | 
 | 
|---|
| 110 | } // end namespace internal
 | 
|---|
| 111 | 
 | 
|---|
| 112 | template<typename VectorsType, typename CoeffsType, int Side> class HouseholderSequence
 | 
|---|
| 113 |   : public EigenBase<HouseholderSequence<VectorsType,CoeffsType,Side> >
 | 
|---|
| 114 | {
 | 
|---|
| 115 |     typedef typename internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::EssentialVectorType EssentialVectorType;
 | 
|---|
| 116 |   
 | 
|---|
| 117 |   public:
 | 
|---|
| 118 |     enum {
 | 
|---|
| 119 |       RowsAtCompileTime = internal::traits<HouseholderSequence>::RowsAtCompileTime,
 | 
|---|
| 120 |       ColsAtCompileTime = internal::traits<HouseholderSequence>::ColsAtCompileTime,
 | 
|---|
| 121 |       MaxRowsAtCompileTime = internal::traits<HouseholderSequence>::MaxRowsAtCompileTime,
 | 
|---|
| 122 |       MaxColsAtCompileTime = internal::traits<HouseholderSequence>::MaxColsAtCompileTime
 | 
|---|
| 123 |     };
 | 
|---|
| 124 |     typedef typename internal::traits<HouseholderSequence>::Scalar Scalar;
 | 
|---|
| 125 |     typedef typename VectorsType::Index Index;
 | 
|---|
| 126 | 
 | 
|---|
| 127 |     typedef HouseholderSequence<
 | 
|---|
| 128 |       typename internal::conditional<NumTraits<Scalar>::IsComplex,
 | 
|---|
| 129 |         typename internal::remove_all<typename VectorsType::ConjugateReturnType>::type,
 | 
|---|
| 130 |         VectorsType>::type,
 | 
|---|
| 131 |       typename internal::conditional<NumTraits<Scalar>::IsComplex,
 | 
|---|
| 132 |         typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type,
 | 
|---|
| 133 |         CoeffsType>::type,
 | 
|---|
| 134 |       Side
 | 
|---|
| 135 |     > ConjugateReturnType;
 | 
|---|
| 136 | 
 | 
|---|
| 137 |     /** \brief Constructor.
 | 
|---|
| 138 |       * \param[in]  v      %Matrix containing the essential parts of the Householder vectors
 | 
|---|
| 139 |       * \param[in]  h      Vector containing the Householder coefficients
 | 
|---|
| 140 |       *
 | 
|---|
| 141 |       * Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The
 | 
|---|
| 142 |       * i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th
 | 
|---|
| 143 |       * Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the
 | 
|---|
| 144 |       * i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many
 | 
|---|
| 145 |       * Householder reflections as there are columns.
 | 
|---|
| 146 |       *
 | 
|---|
| 147 |       * \note The %HouseholderSequence object stores \p v and \p h by reference.
 | 
|---|
| 148 |       *
 | 
|---|
| 149 |       * Example: \include HouseholderSequence_HouseholderSequence.cpp
 | 
|---|
| 150 |       * Output: \verbinclude HouseholderSequence_HouseholderSequence.out
 | 
|---|
| 151 |       *
 | 
|---|
| 152 |       * \sa setLength(), setShift()
 | 
|---|
| 153 |       */
 | 
|---|
| 154 |     HouseholderSequence(const VectorsType& v, const CoeffsType& h)
 | 
|---|
| 155 |       : m_vectors(v), m_coeffs(h), m_trans(false), m_length(v.diagonalSize()),
 | 
|---|
| 156 |         m_shift(0)
 | 
|---|
| 157 |     {
 | 
|---|
| 158 |     }
 | 
|---|
| 159 | 
 | 
|---|
| 160 |     /** \brief Copy constructor. */
 | 
|---|
| 161 |     HouseholderSequence(const HouseholderSequence& other)
 | 
|---|
| 162 |       : m_vectors(other.m_vectors),
 | 
|---|
| 163 |         m_coeffs(other.m_coeffs),
 | 
|---|
| 164 |         m_trans(other.m_trans),
 | 
|---|
| 165 |         m_length(other.m_length),
 | 
|---|
| 166 |         m_shift(other.m_shift)
 | 
|---|
| 167 |     {
 | 
|---|
| 168 |     }
 | 
|---|
| 169 | 
 | 
|---|
| 170 |     /** \brief Number of rows of transformation viewed as a matrix.
 | 
|---|
| 171 |       * \returns Number of rows 
 | 
|---|
| 172 |       * \details This equals the dimension of the space that the transformation acts on.
 | 
|---|
| 173 |       */
 | 
|---|
| 174 |     Index rows() const { return Side==OnTheLeft ? m_vectors.rows() : m_vectors.cols(); }
 | 
|---|
| 175 | 
 | 
|---|
| 176 |     /** \brief Number of columns of transformation viewed as a matrix.
 | 
|---|
| 177 |       * \returns Number of columns
 | 
|---|
| 178 |       * \details This equals the dimension of the space that the transformation acts on.
 | 
|---|
| 179 |       */
 | 
|---|
| 180 |     Index cols() const { return rows(); }
 | 
|---|
| 181 | 
 | 
|---|
| 182 |     /** \brief Essential part of a Householder vector.
 | 
|---|
| 183 |       * \param[in]  k  Index of Householder reflection
 | 
|---|
| 184 |       * \returns    Vector containing non-trivial entries of k-th Householder vector
 | 
|---|
| 185 |       *
 | 
|---|
| 186 |       * This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of
 | 
|---|
| 187 |       * length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector
 | 
|---|
| 188 |       * \f[ 
 | 
|---|
| 189 |       * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. 
 | 
|---|
| 190 |       * \f]
 | 
|---|
| 191 |       * The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v
 | 
|---|
| 192 |       * passed to the constructor.
 | 
|---|
| 193 |       *
 | 
|---|
| 194 |       * \sa setShift(), shift()
 | 
|---|
| 195 |       */
 | 
|---|
| 196 |     const EssentialVectorType essentialVector(Index k) const
 | 
|---|
| 197 |     {
 | 
|---|
| 198 |       eigen_assert(k >= 0 && k < m_length);
 | 
|---|
| 199 |       return internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::essentialVector(*this, k);
 | 
|---|
| 200 |     }
 | 
|---|
| 201 | 
 | 
|---|
| 202 |     /** \brief %Transpose of the Householder sequence. */
 | 
|---|
| 203 |     HouseholderSequence transpose() const
 | 
|---|
| 204 |     {
 | 
|---|
| 205 |       return HouseholderSequence(*this).setTrans(!m_trans);
 | 
|---|
| 206 |     }
 | 
|---|
| 207 | 
 | 
|---|
| 208 |     /** \brief Complex conjugate of the Householder sequence. */
 | 
|---|
| 209 |     ConjugateReturnType conjugate() const
 | 
|---|
| 210 |     {
 | 
|---|
| 211 |       return ConjugateReturnType(m_vectors.conjugate(), m_coeffs.conjugate())
 | 
|---|
| 212 |              .setTrans(m_trans)
 | 
|---|
| 213 |              .setLength(m_length)
 | 
|---|
| 214 |              .setShift(m_shift);
 | 
|---|
| 215 |     }
 | 
|---|
| 216 | 
 | 
|---|
| 217 |     /** \brief Adjoint (conjugate transpose) of the Householder sequence. */
 | 
|---|
| 218 |     ConjugateReturnType adjoint() const
 | 
|---|
| 219 |     {
 | 
|---|
| 220 |       return conjugate().setTrans(!m_trans);
 | 
|---|
| 221 |     }
 | 
|---|
| 222 | 
 | 
|---|
| 223 |     /** \brief Inverse of the Householder sequence (equals the adjoint). */
 | 
|---|
| 224 |     ConjugateReturnType inverse() const { return adjoint(); }
 | 
|---|
| 225 | 
 | 
|---|
| 226 |     /** \internal */
 | 
|---|
| 227 |     template<typename DestType> inline void evalTo(DestType& dst) const
 | 
|---|
| 228 |     {
 | 
|---|
| 229 |       Matrix<Scalar, DestType::RowsAtCompileTime, 1,
 | 
|---|
| 230 |              AutoAlign|ColMajor, DestType::MaxRowsAtCompileTime, 1> workspace(rows());
 | 
|---|
| 231 |       evalTo(dst, workspace);
 | 
|---|
| 232 |     }
 | 
|---|
| 233 | 
 | 
|---|
| 234 |     /** \internal */
 | 
|---|
| 235 |     template<typename Dest, typename Workspace>
 | 
|---|
| 236 |     void evalTo(Dest& dst, Workspace& workspace) const
 | 
|---|
| 237 |     {
 | 
|---|
| 238 |       workspace.resize(rows());
 | 
|---|
| 239 |       Index vecs = m_length;
 | 
|---|
| 240 |       const typename Dest::Scalar *dst_data = internal::extract_data(dst);
 | 
|---|
| 241 |       if(    internal::is_same<typename internal::remove_all<VectorsType>::type,Dest>::value
 | 
|---|
| 242 |           && dst_data!=0 && dst_data == internal::extract_data(m_vectors))
 | 
|---|
| 243 |       {
 | 
|---|
| 244 |         // in-place
 | 
|---|
| 245 |         dst.diagonal().setOnes();
 | 
|---|
| 246 |         dst.template triangularView<StrictlyUpper>().setZero();
 | 
|---|
| 247 |         for(Index k = vecs-1; k >= 0; --k)
 | 
|---|
| 248 |         {
 | 
|---|
| 249 |           Index cornerSize = rows() - k - m_shift;
 | 
|---|
| 250 |           if(m_trans)
 | 
|---|
| 251 |             dst.bottomRightCorner(cornerSize, cornerSize)
 | 
|---|
| 252 |                .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data());
 | 
|---|
| 253 |           else
 | 
|---|
| 254 |             dst.bottomRightCorner(cornerSize, cornerSize)
 | 
|---|
| 255 |                .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data());
 | 
|---|
| 256 | 
 | 
|---|
| 257 |           // clear the off diagonal vector
 | 
|---|
| 258 |           dst.col(k).tail(rows()-k-1).setZero();
 | 
|---|
| 259 |         }
 | 
|---|
| 260 |         // clear the remaining columns if needed
 | 
|---|
| 261 |         for(Index k = 0; k<cols()-vecs ; ++k)
 | 
|---|
| 262 |           dst.col(k).tail(rows()-k-1).setZero();
 | 
|---|
| 263 |       }
 | 
|---|
| 264 |       else
 | 
|---|
| 265 |       {
 | 
|---|
| 266 |         dst.setIdentity(rows(), rows());
 | 
|---|
| 267 |         for(Index k = vecs-1; k >= 0; --k)
 | 
|---|
| 268 |         {
 | 
|---|
| 269 |           Index cornerSize = rows() - k - m_shift;
 | 
|---|
| 270 |           if(m_trans)
 | 
|---|
| 271 |             dst.bottomRightCorner(cornerSize, cornerSize)
 | 
|---|
| 272 |                .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0));
 | 
|---|
| 273 |           else
 | 
|---|
| 274 |             dst.bottomRightCorner(cornerSize, cornerSize)
 | 
|---|
| 275 |                .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0));
 | 
|---|
| 276 |         }
 | 
|---|
| 277 |       }
 | 
|---|
| 278 |     }
 | 
|---|
| 279 | 
 | 
|---|
| 280 |     /** \internal */
 | 
|---|
| 281 |     template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const
 | 
|---|
| 282 |     {
 | 
|---|
| 283 |       Matrix<Scalar,1,Dest::RowsAtCompileTime,RowMajor,1,Dest::MaxRowsAtCompileTime> workspace(dst.rows());
 | 
|---|
| 284 |       applyThisOnTheRight(dst, workspace);
 | 
|---|
| 285 |     }
 | 
|---|
| 286 | 
 | 
|---|
| 287 |     /** \internal */
 | 
|---|
| 288 |     template<typename Dest, typename Workspace>
 | 
|---|
| 289 |     inline void applyThisOnTheRight(Dest& dst, Workspace& workspace) const
 | 
|---|
| 290 |     {
 | 
|---|
| 291 |       workspace.resize(dst.rows());
 | 
|---|
| 292 |       for(Index k = 0; k < m_length; ++k)
 | 
|---|
| 293 |       {
 | 
|---|
| 294 |         Index actual_k = m_trans ? m_length-k-1 : k;
 | 
|---|
| 295 |         dst.rightCols(rows()-m_shift-actual_k)
 | 
|---|
| 296 |            .applyHouseholderOnTheRight(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
 | 
|---|
| 297 |       }
 | 
|---|
| 298 |     }
 | 
|---|
| 299 | 
 | 
|---|
| 300 |     /** \internal */
 | 
|---|
| 301 |     template<typename Dest> inline void applyThisOnTheLeft(Dest& dst) const
 | 
|---|
| 302 |     {
 | 
|---|
| 303 |       Matrix<Scalar,1,Dest::ColsAtCompileTime,RowMajor,1,Dest::MaxColsAtCompileTime> workspace(dst.cols());
 | 
|---|
| 304 |       applyThisOnTheLeft(dst, workspace);
 | 
|---|
| 305 |     }
 | 
|---|
| 306 | 
 | 
|---|
| 307 |     /** \internal */
 | 
|---|
| 308 |     template<typename Dest, typename Workspace>
 | 
|---|
| 309 |     inline void applyThisOnTheLeft(Dest& dst, Workspace& workspace) const
 | 
|---|
| 310 |     {
 | 
|---|
| 311 |       workspace.resize(dst.cols());
 | 
|---|
| 312 |       for(Index k = 0; k < m_length; ++k)
 | 
|---|
| 313 |       {
 | 
|---|
| 314 |         Index actual_k = m_trans ? k : m_length-k-1;
 | 
|---|
| 315 |         dst.bottomRows(rows()-m_shift-actual_k)
 | 
|---|
| 316 |            .applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
 | 
|---|
| 317 |       }
 | 
|---|
| 318 |     }
 | 
|---|
| 319 | 
 | 
|---|
| 320 |     /** \brief Computes the product of a Householder sequence with a matrix.
 | 
|---|
| 321 |       * \param[in]  other  %Matrix being multiplied.
 | 
|---|
| 322 |       * \returns    Expression object representing the product.
 | 
|---|
| 323 |       *
 | 
|---|
| 324 |       * This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this
 | 
|---|
| 325 |       * and \f$ M \f$ is the matrix \p other.
 | 
|---|
| 326 |       */
 | 
|---|
| 327 |     template<typename OtherDerived>
 | 
|---|
| 328 |     typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other) const
 | 
|---|
| 329 |     {
 | 
|---|
| 330 |       typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type
 | 
|---|
| 331 |         res(other.template cast<typename internal::matrix_type_times_scalar_type<Scalar,OtherDerived>::ResultScalar>());
 | 
|---|
| 332 |       applyThisOnTheLeft(res);
 | 
|---|
| 333 |       return res;
 | 
|---|
| 334 |     }
 | 
|---|
| 335 | 
 | 
|---|
| 336 |     template<typename _VectorsType, typename _CoeffsType, int _Side> friend struct internal::hseq_side_dependent_impl;
 | 
|---|
| 337 | 
 | 
|---|
| 338 |     /** \brief Sets the length of the Householder sequence.
 | 
|---|
| 339 |       * \param [in]  length  New value for the length.
 | 
|---|
| 340 |       *
 | 
|---|
| 341 |       * By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set
 | 
|---|
| 342 |       * to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that
 | 
|---|
| 343 |       * is smaller. After this function is called, the length equals \p length.
 | 
|---|
| 344 |       *
 | 
|---|
| 345 |       * \sa length()
 | 
|---|
| 346 |       */
 | 
|---|
| 347 |     HouseholderSequence& setLength(Index length)
 | 
|---|
| 348 |     {
 | 
|---|
| 349 |       m_length = length;
 | 
|---|
| 350 |       return *this;
 | 
|---|
| 351 |     }
 | 
|---|
| 352 | 
 | 
|---|
| 353 |     /** \brief Sets the shift of the Householder sequence.
 | 
|---|
| 354 |       * \param [in]  shift  New value for the shift.
 | 
|---|
| 355 |       *
 | 
|---|
| 356 |       * By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th
 | 
|---|
| 357 |       * column of the matrix \p v passed to the constructor corresponds to the i-th Householder
 | 
|---|
| 358 |       * reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}}
 | 
|---|
| 359 |       * H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th
 | 
|---|
| 360 |       * Householder reflection.
 | 
|---|
| 361 |       *
 | 
|---|
| 362 |       * \sa shift()
 | 
|---|
| 363 |       */
 | 
|---|
| 364 |     HouseholderSequence& setShift(Index shift)
 | 
|---|
| 365 |     {
 | 
|---|
| 366 |       m_shift = shift;
 | 
|---|
| 367 |       return *this;
 | 
|---|
| 368 |     }
 | 
|---|
| 369 | 
 | 
|---|
| 370 |     Index length() const { return m_length; }  /**< \brief Returns the length of the Householder sequence. */
 | 
|---|
| 371 |     Index shift() const { return m_shift; }    /**< \brief Returns the shift of the Householder sequence. */
 | 
|---|
| 372 | 
 | 
|---|
| 373 |     /* Necessary for .adjoint() and .conjugate() */
 | 
|---|
| 374 |     template <typename VectorsType2, typename CoeffsType2, int Side2> friend class HouseholderSequence;
 | 
|---|
| 375 | 
 | 
|---|
| 376 |   protected:
 | 
|---|
| 377 | 
 | 
|---|
| 378 |     /** \brief Sets the transpose flag.
 | 
|---|
| 379 |       * \param [in]  trans  New value of the transpose flag.
 | 
|---|
| 380 |       *
 | 
|---|
| 381 |       * By default, the transpose flag is not set. If the transpose flag is set, then this object represents 
 | 
|---|
| 382 |       * \f$ H^T = H_{n-1}^T \ldots H_1^T H_0^T \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$.
 | 
|---|
| 383 |       *
 | 
|---|
| 384 |       * \sa trans()
 | 
|---|
| 385 |       */
 | 
|---|
| 386 |     HouseholderSequence& setTrans(bool trans)
 | 
|---|
| 387 |     {
 | 
|---|
| 388 |       m_trans = trans;
 | 
|---|
| 389 |       return *this;
 | 
|---|
| 390 |     }
 | 
|---|
| 391 | 
 | 
|---|
| 392 |     bool trans() const { return m_trans; }     /**< \brief Returns the transpose flag. */
 | 
|---|
| 393 | 
 | 
|---|
| 394 |     typename VectorsType::Nested m_vectors;
 | 
|---|
| 395 |     typename CoeffsType::Nested m_coeffs;
 | 
|---|
| 396 |     bool m_trans;
 | 
|---|
| 397 |     Index m_length;
 | 
|---|
| 398 |     Index m_shift;
 | 
|---|
| 399 | };
 | 
|---|
| 400 | 
 | 
|---|
| 401 | /** \brief Computes the product of a matrix with a Householder sequence.
 | 
|---|
| 402 |   * \param[in]  other  %Matrix being multiplied.
 | 
|---|
| 403 |   * \param[in]  h      %HouseholderSequence being multiplied.
 | 
|---|
| 404 |   * \returns    Expression object representing the product.
 | 
|---|
| 405 |   *
 | 
|---|
| 406 |   * This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the
 | 
|---|
| 407 |   * Householder sequence represented by \p h.
 | 
|---|
| 408 |   */
 | 
|---|
| 409 | template<typename OtherDerived, typename VectorsType, typename CoeffsType, int Side>
 | 
|---|
| 410 | typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other, const HouseholderSequence<VectorsType,CoeffsType,Side>& h)
 | 
|---|
| 411 | {
 | 
|---|
| 412 |   typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type
 | 
|---|
| 413 |     res(other.template cast<typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::ResultScalar>());
 | 
|---|
| 414 |   h.applyThisOnTheRight(res);
 | 
|---|
| 415 |   return res;
 | 
|---|
| 416 | }
 | 
|---|
| 417 | 
 | 
|---|
| 418 | /** \ingroup Householder_Module \householder_module
 | 
|---|
| 419 |   * \brief Convenience function for constructing a Householder sequence. 
 | 
|---|
| 420 |   * \returns A HouseholderSequence constructed from the specified arguments.
 | 
|---|
| 421 |   */
 | 
|---|
| 422 | template<typename VectorsType, typename CoeffsType>
 | 
|---|
| 423 | HouseholderSequence<VectorsType,CoeffsType> householderSequence(const VectorsType& v, const CoeffsType& h)
 | 
|---|
| 424 | {
 | 
|---|
| 425 |   return HouseholderSequence<VectorsType,CoeffsType,OnTheLeft>(v, h);
 | 
|---|
| 426 | }
 | 
|---|
| 427 | 
 | 
|---|
| 428 | /** \ingroup Householder_Module \householder_module
 | 
|---|
| 429 |   * \brief Convenience function for constructing a Householder sequence. 
 | 
|---|
| 430 |   * \returns A HouseholderSequence constructed from the specified arguments.
 | 
|---|
| 431 |   * \details This function differs from householderSequence() in that the template argument \p OnTheSide of
 | 
|---|
| 432 |   * the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft.
 | 
|---|
| 433 |   */
 | 
|---|
| 434 | template<typename VectorsType, typename CoeffsType>
 | 
|---|
| 435 | HouseholderSequence<VectorsType,CoeffsType,OnTheRight> rightHouseholderSequence(const VectorsType& v, const CoeffsType& h)
 | 
|---|
| 436 | {
 | 
|---|
| 437 |   return HouseholderSequence<VectorsType,CoeffsType,OnTheRight>(v, h);
 | 
|---|
| 438 | }
 | 
|---|
| 439 | 
 | 
|---|
| 440 | } // end namespace Eigen
 | 
|---|
| 441 | 
 | 
|---|
| 442 | #endif // EIGEN_HOUSEHOLDER_SEQUENCE_H
 | 
|---|