source: pacpussensors/trunk/Vislab/lib3dv/eigen/Eigen/src/SparseLU/SparseLU.h@ 136

Last change on this file since 136 was 136, checked in by ldecherf, 7 years ago

Doc

File size: 28.3 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11
12#ifndef EIGEN_SPARSE_LU_H
13#define EIGEN_SPARSE_LU_H
14
15namespace Eigen {
16
17template <typename _MatrixType, typename _OrderingType = COLAMDOrdering<typename _MatrixType::Index> > class SparseLU;
18template <typename MappedSparseMatrixType> struct SparseLUMatrixLReturnType;
19template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixUReturnType;
20
21/** \ingroup SparseLU_Module
22 * \class SparseLU
23 *
24 * \brief Sparse supernodal LU factorization for general matrices
25 *
26 * This class implements the supernodal LU factorization for general matrices.
27 * It uses the main techniques from the sequential SuperLU package
28 * (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real
29 * and complex arithmetics with single and double precision, depending on the
30 * scalar type of your input matrix.
31 * The code has been optimized to provide BLAS-3 operations during supernode-panel updates.
32 * It benefits directly from the built-in high-performant Eigen BLAS routines.
33 * Moreover, when the size of a supernode is very small, the BLAS calls are avoided to
34 * enable a better optimization from the compiler. For best performance,
35 * you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors.
36 *
37 * An important parameter of this class is the ordering method. It is used to reorder the columns
38 * (and eventually the rows) of the matrix to reduce the number of new elements that are created during
39 * numerical factorization. The cheapest method available is COLAMD.
40 * See \link OrderingMethods_Module the OrderingMethods module \endlink for the list of
41 * built-in and external ordering methods.
42 *
43 * Simple example with key steps
44 * \code
45 * VectorXd x(n), b(n);
46 * SparseMatrix<double, ColMajor> A;
47 * SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<Index> > solver;
48 * // fill A and b;
49 * // Compute the ordering permutation vector from the structural pattern of A
50 * solver.analyzePattern(A);
51 * // Compute the numerical factorization
52 * solver.factorize(A);
53 * //Use the factors to solve the linear system
54 * x = solver.solve(b);
55 * \endcode
56 *
57 * \warning The input matrix A should be in a \b compressed and \b column-major form.
58 * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
59 *
60 * \note Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix.
61 * For badly scaled matrices, this step can be useful to reduce the pivoting during factorization.
62 * If this is the case for your matrices, you can try the basic scaling method at
63 * "unsupported/Eigen/src/IterativeSolvers/Scaling.h"
64 *
65 * \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<>
66 * \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD
67 *
68 *
69 * \sa \ref TutorialSparseDirectSolvers
70 * \sa \ref OrderingMethods_Module
71 */
72template <typename _MatrixType, typename _OrderingType>
73class SparseLU : public internal::SparseLUImpl<typename _MatrixType::Scalar, typename _MatrixType::Index>
74{
75 public:
76 typedef _MatrixType MatrixType;
77 typedef _OrderingType OrderingType;
78 typedef typename MatrixType::Scalar Scalar;
79 typedef typename MatrixType::RealScalar RealScalar;
80 typedef typename MatrixType::Index Index;
81 typedef SparseMatrix<Scalar,ColMajor,Index> NCMatrix;
82 typedef internal::MappedSuperNodalMatrix<Scalar, Index> SCMatrix;
83 typedef Matrix<Scalar,Dynamic,1> ScalarVector;
84 typedef Matrix<Index,Dynamic,1> IndexVector;
85 typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
86 typedef internal::SparseLUImpl<Scalar, Index> Base;
87
88 public:
89 SparseLU():m_isInitialized(true),m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
90 {
91 initperfvalues();
92 }
93 SparseLU(const MatrixType& matrix):m_isInitialized(true),m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
94 {
95 initperfvalues();
96 compute(matrix);
97 }
98
99 ~SparseLU()
100 {
101 // Free all explicit dynamic pointers
102 }
103
104 void analyzePattern (const MatrixType& matrix);
105 void factorize (const MatrixType& matrix);
106 void simplicialfactorize(const MatrixType& matrix);
107
108 /**
109 * Compute the symbolic and numeric factorization of the input sparse matrix.
110 * The input matrix should be in column-major storage.
111 */
112 void compute (const MatrixType& matrix)
113 {
114 // Analyze
115 analyzePattern(matrix);
116 //Factorize
117 factorize(matrix);
118 }
119
120 inline Index rows() const { return m_mat.rows(); }
121 inline Index cols() const { return m_mat.cols(); }
122 /** Indicate that the pattern of the input matrix is symmetric */
123 void isSymmetric(bool sym)
124 {
125 m_symmetricmode = sym;
126 }
127
128 /** \returns an expression of the matrix L, internally stored as supernodes
129 * The only operation available with this expression is the triangular solve
130 * \code
131 * y = b; matrixL().solveInPlace(y);
132 * \endcode
133 */
134 SparseLUMatrixLReturnType<SCMatrix> matrixL() const
135 {
136 return SparseLUMatrixLReturnType<SCMatrix>(m_Lstore);
137 }
138 /** \returns an expression of the matrix U,
139 * The only operation available with this expression is the triangular solve
140 * \code
141 * y = b; matrixU().solveInPlace(y);
142 * \endcode
143 */
144 SparseLUMatrixUReturnType<SCMatrix,MappedSparseMatrix<Scalar,ColMajor,Index> > matrixU() const
145 {
146 return SparseLUMatrixUReturnType<SCMatrix, MappedSparseMatrix<Scalar,ColMajor,Index> >(m_Lstore, m_Ustore);
147 }
148
149 /**
150 * \returns a reference to the row matrix permutation \f$ P_r \f$ such that \f$P_r A P_c^T = L U\f$
151 * \sa colsPermutation()
152 */
153 inline const PermutationType& rowsPermutation() const
154 {
155 return m_perm_r;
156 }
157 /**
158 * \returns a reference to the column matrix permutation\f$ P_c^T \f$ such that \f$P_r A P_c^T = L U\f$
159 * \sa rowsPermutation()
160 */
161 inline const PermutationType& colsPermutation() const
162 {
163 return m_perm_c;
164 }
165 /** Set the threshold used for a diagonal entry to be an acceptable pivot. */
166 void setPivotThreshold(const RealScalar& thresh)
167 {
168 m_diagpivotthresh = thresh;
169 }
170
171 /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
172 *
173 * \warning the destination matrix X in X = this->solve(B) must be colmun-major.
174 *
175 * \sa compute()
176 */
177 template<typename Rhs>
178 inline const internal::solve_retval<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const
179 {
180 eigen_assert(m_factorizationIsOk && "SparseLU is not initialized.");
181 eigen_assert(rows()==B.rows()
182 && "SparseLU::solve(): invalid number of rows of the right hand side matrix B");
183 return internal::solve_retval<SparseLU, Rhs>(*this, B.derived());
184 }
185
186 /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
187 *
188 * \sa compute()
189 */
190 template<typename Rhs>
191 inline const internal::sparse_solve_retval<SparseLU, Rhs> solve(const SparseMatrixBase<Rhs>& B) const
192 {
193 eigen_assert(m_factorizationIsOk && "SparseLU is not initialized.");
194 eigen_assert(rows()==B.rows()
195 && "SparseLU::solve(): invalid number of rows of the right hand side matrix B");
196 return internal::sparse_solve_retval<SparseLU, Rhs>(*this, B.derived());
197 }
198
199 /** \brief Reports whether previous computation was successful.
200 *
201 * \returns \c Success if computation was succesful,
202 * \c NumericalIssue if the LU factorization reports a problem, zero diagonal for instance
203 * \c InvalidInput if the input matrix is invalid
204 *
205 * \sa iparm()
206 */
207 ComputationInfo info() const
208 {
209 eigen_assert(m_isInitialized && "Decomposition is not initialized.");
210 return m_info;
211 }
212
213 /**
214 * \returns A string describing the type of error
215 */
216 std::string lastErrorMessage() const
217 {
218 return m_lastError;
219 }
220
221 template<typename Rhs, typename Dest>
222 bool _solve(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
223 {
224 Dest& X(X_base.derived());
225 eigen_assert(m_factorizationIsOk && "The matrix should be factorized first");
226 EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
227 THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
228
229 // Permute the right hand side to form X = Pr*B
230 // on return, X is overwritten by the computed solution
231 X.resize(B.rows(),B.cols());
232
233 // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
234 for(Index j = 0; j < B.cols(); ++j)
235 X.col(j) = rowsPermutation() * B.const_cast_derived().col(j);
236
237 //Forward substitution with L
238 this->matrixL().solveInPlace(X);
239 this->matrixU().solveInPlace(X);
240
241 // Permute back the solution
242 for (Index j = 0; j < B.cols(); ++j)
243 X.col(j) = colsPermutation().inverse() * X.col(j);
244
245 return true;
246 }
247
248 /**
249 * \returns the absolute value of the determinant of the matrix of which
250 * *this is the QR decomposition.
251 *
252 * \warning a determinant can be very big or small, so for matrices
253 * of large enough dimension, there is a risk of overflow/underflow.
254 * One way to work around that is to use logAbsDeterminant() instead.
255 *
256 * \sa logAbsDeterminant(), signDeterminant()
257 */
258 Scalar absDeterminant()
259 {
260 eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
261 // Initialize with the determinant of the row matrix
262 Scalar det = Scalar(1.);
263 // Note that the diagonal blocks of U are stored in supernodes,
264 // which are available in the L part :)
265 for (Index j = 0; j < this->cols(); ++j)
266 {
267 for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
268 {
269 if(it.index() == j)
270 {
271 using std::abs;
272 det *= abs(it.value());
273 break;
274 }
275 }
276 }
277 return det;
278 }
279
280 /** \returns the natural log of the absolute value of the determinant of the matrix
281 * of which **this is the QR decomposition
282 *
283 * \note This method is useful to work around the risk of overflow/underflow that's
284 * inherent to the determinant computation.
285 *
286 * \sa absDeterminant(), signDeterminant()
287 */
288 Scalar logAbsDeterminant() const
289 {
290 eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
291 Scalar det = Scalar(0.);
292 for (Index j = 0; j < this->cols(); ++j)
293 {
294 for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
295 {
296 if(it.row() < j) continue;
297 if(it.row() == j)
298 {
299 using std::log; using std::abs;
300 det += log(abs(it.value()));
301 break;
302 }
303 }
304 }
305 return det;
306 }
307
308 /** \returns A number representing the sign of the determinant
309 *
310 * \sa absDeterminant(), logAbsDeterminant()
311 */
312 Scalar signDeterminant()
313 {
314 eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
315 // Initialize with the determinant of the row matrix
316 Index det = 1;
317 // Note that the diagonal blocks of U are stored in supernodes,
318 // which are available in the L part :)
319 for (Index j = 0; j < this->cols(); ++j)
320 {
321 for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
322 {
323 if(it.index() == j)
324 {
325 if(it.value()<0)
326 det = -det;
327 else if(it.value()==0)
328 return 0;
329 break;
330 }
331 }
332 }
333 return det * m_detPermR * m_detPermC;
334 }
335
336 /** \returns The determinant of the matrix.
337 *
338 * \sa absDeterminant(), logAbsDeterminant()
339 */
340 Scalar determinant()
341 {
342 eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
343 // Initialize with the determinant of the row matrix
344 Scalar det = Scalar(1.);
345 // Note that the diagonal blocks of U are stored in supernodes,
346 // which are available in the L part :)
347 for (Index j = 0; j < this->cols(); ++j)
348 {
349 for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
350 {
351 if(it.index() == j)
352 {
353 det *= it.value();
354 break;
355 }
356 }
357 }
358 return det * Scalar(m_detPermR * m_detPermC);
359 }
360
361 protected:
362 // Functions
363 void initperfvalues()
364 {
365 m_perfv.panel_size = 16;
366 m_perfv.relax = 1;
367 m_perfv.maxsuper = 128;
368 m_perfv.rowblk = 16;
369 m_perfv.colblk = 8;
370 m_perfv.fillfactor = 20;
371 }
372
373 // Variables
374 mutable ComputationInfo m_info;
375 bool m_isInitialized;
376 bool m_factorizationIsOk;
377 bool m_analysisIsOk;
378 std::string m_lastError;
379 NCMatrix m_mat; // The input (permuted ) matrix
380 SCMatrix m_Lstore; // The lower triangular matrix (supernodal)
381 MappedSparseMatrix<Scalar,ColMajor,Index> m_Ustore; // The upper triangular matrix
382 PermutationType m_perm_c; // Column permutation
383 PermutationType m_perm_r ; // Row permutation
384 IndexVector m_etree; // Column elimination tree
385
386 typename Base::GlobalLU_t m_glu;
387
388 // SparseLU options
389 bool m_symmetricmode;
390 // values for performance
391 internal::perfvalues<Index> m_perfv;
392 RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot
393 Index m_nnzL, m_nnzU; // Nonzeros in L and U factors
394 Index m_detPermR, m_detPermC; // Determinants of the permutation matrices
395 private:
396 // Disable copy constructor
397 SparseLU (const SparseLU& );
398
399}; // End class SparseLU
400
401
402
403// Functions needed by the anaysis phase
404/**
405 * Compute the column permutation to minimize the fill-in
406 *
407 * - Apply this permutation to the input matrix -
408 *
409 * - Compute the column elimination tree on the permuted matrix
410 *
411 * - Postorder the elimination tree and the column permutation
412 *
413 */
414template <typename MatrixType, typename OrderingType>
415void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat)
416{
417
418 //TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat.
419
420 OrderingType ord;
421 ord(mat,m_perm_c);
422
423 // Apply the permutation to the column of the input matrix
424 //First copy the whole input matrix.
425 m_mat = mat;
426 if (m_perm_c.size()) {
427 m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used.
428 //Then, permute only the column pointers
429 const Index * outerIndexPtr;
430 if (mat.isCompressed()) outerIndexPtr = mat.outerIndexPtr();
431 else
432 {
433 Index *outerIndexPtr_t = new Index[mat.cols()+1];
434 for(Index i = 0; i <= mat.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
435 outerIndexPtr = outerIndexPtr_t;
436 }
437 for (Index i = 0; i < mat.cols(); i++)
438 {
439 m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
440 m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
441 }
442 if(!mat.isCompressed()) delete[] outerIndexPtr;
443 }
444 // Compute the column elimination tree of the permuted matrix
445 IndexVector firstRowElt;
446 internal::coletree(m_mat, m_etree,firstRowElt);
447
448 // In symmetric mode, do not do postorder here
449 if (!m_symmetricmode) {
450 IndexVector post, iwork;
451 // Post order etree
452 internal::treePostorder(m_mat.cols(), m_etree, post);
453
454
455 // Renumber etree in postorder
456 Index m = m_mat.cols();
457 iwork.resize(m+1);
458 for (Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i));
459 m_etree = iwork;
460
461 // Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree
462 PermutationType post_perm(m);
463 for (Index i = 0; i < m; i++)
464 post_perm.indices()(i) = post(i);
465
466 // Combine the two permutations : postorder the permutation for future use
467 if(m_perm_c.size()) {
468 m_perm_c = post_perm * m_perm_c;
469 }
470
471 } // end postordering
472
473 m_analysisIsOk = true;
474}
475
476// Functions needed by the numerical factorization phase
477
478
479/**
480 * - Numerical factorization
481 * - Interleaved with the symbolic factorization
482 * On exit, info is
483 *
484 * = 0: successful factorization
485 *
486 * > 0: if info = i, and i is
487 *
488 * <= A->ncol: U(i,i) is exactly zero. The factorization has
489 * been completed, but the factor U is exactly singular,
490 * and division by zero will occur if it is used to solve a
491 * system of equations.
492 *
493 * > A->ncol: number of bytes allocated when memory allocation
494 * failure occurred, plus A->ncol. If lwork = -1, it is
495 * the estimated amount of space needed, plus A->ncol.
496 */
497template <typename MatrixType, typename OrderingType>
498void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
499{
500 using internal::emptyIdxLU;
501 eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
502 eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices");
503
504 typedef typename IndexVector::Scalar Index;
505
506
507 // Apply the column permutation computed in analyzepattern()
508 // m_mat = matrix * m_perm_c.inverse();
509 m_mat = matrix;
510 if (m_perm_c.size())
511 {
512 m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers.
513 //Then, permute only the column pointers
514 const Index * outerIndexPtr;
515 if (matrix.isCompressed()) outerIndexPtr = matrix.outerIndexPtr();
516 else
517 {
518 Index* outerIndexPtr_t = new Index[matrix.cols()+1];
519 for(Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
520 outerIndexPtr = outerIndexPtr_t;
521 }
522 for (Index i = 0; i < matrix.cols(); i++)
523 {
524 m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
525 m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
526 }
527 if(!matrix.isCompressed()) delete[] outerIndexPtr;
528 }
529 else
530 { //FIXME This should not be needed if the empty permutation is handled transparently
531 m_perm_c.resize(matrix.cols());
532 for(Index i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i;
533 }
534
535 Index m = m_mat.rows();
536 Index n = m_mat.cols();
537 Index nnz = m_mat.nonZeros();
538 Index maxpanel = m_perfv.panel_size * m;
539 // Allocate working storage common to the factor routines
540 Index lwork = 0;
541 Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu);
542 if (info)
543 {
544 m_lastError = "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ;
545 m_factorizationIsOk = false;
546 return ;
547 }
548
549 // Set up pointers for integer working arrays
550 IndexVector segrep(m); segrep.setZero();
551 IndexVector parent(m); parent.setZero();
552 IndexVector xplore(m); xplore.setZero();
553 IndexVector repfnz(maxpanel);
554 IndexVector panel_lsub(maxpanel);
555 IndexVector xprune(n); xprune.setZero();
556 IndexVector marker(m*internal::LUNoMarker); marker.setZero();
557
558 repfnz.setConstant(-1);
559 panel_lsub.setConstant(-1);
560
561 // Set up pointers for scalar working arrays
562 ScalarVector dense;
563 dense.setZero(maxpanel);
564 ScalarVector tempv;
565 tempv.setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, /*m_perfv.rowblk*/m) );
566
567 // Compute the inverse of perm_c
568 PermutationType iperm_c(m_perm_c.inverse());
569
570 // Identify initial relaxed snodes
571 IndexVector relax_end(n);
572 if ( m_symmetricmode == true )
573 Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
574 else
575 Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
576
577
578 m_perm_r.resize(m);
579 m_perm_r.indices().setConstant(-1);
580 marker.setConstant(-1);
581 m_detPermR = 1; // Record the determinant of the row permutation
582
583 m_glu.supno(0) = emptyIdxLU; m_glu.xsup.setConstant(0);
584 m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0);
585
586 // Work on one 'panel' at a time. A panel is one of the following :
587 // (a) a relaxed supernode at the bottom of the etree, or
588 // (b) panel_size contiguous columns, <panel_size> defined by the user
589 Index jcol;
590 IndexVector panel_histo(n);
591 Index pivrow; // Pivotal row number in the original row matrix
592 Index nseg1; // Number of segments in U-column above panel row jcol
593 Index nseg; // Number of segments in each U-column
594 Index irep;
595 Index i, k, jj;
596 for (jcol = 0; jcol < n; )
597 {
598 // Adjust panel size so that a panel won't overlap with the next relaxed snode.
599 Index panel_size = m_perfv.panel_size; // upper bound on panel width
600 for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++)
601 {
602 if (relax_end(k) != emptyIdxLU)
603 {
604 panel_size = k - jcol;
605 break;
606 }
607 }
608 if (k == n)
609 panel_size = n - jcol;
610
611 // Symbolic outer factorization on a panel of columns
612 Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu);
613
614 // Numeric sup-panel updates in topological order
615 Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu);
616
617 // Sparse LU within the panel, and below the panel diagonal
618 for ( jj = jcol; jj< jcol + panel_size; jj++)
619 {
620 k = (jj - jcol) * m; // Column index for w-wide arrays
621
622 nseg = nseg1; // begin after all the panel segments
623 //Depth-first-search for the current column
624 VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m);
625 VectorBlock<IndexVector> repfnz_k(repfnz, k, m);
626 info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu);
627 if ( info )
628 {
629 m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() ";
630 m_info = NumericalIssue;
631 m_factorizationIsOk = false;
632 return;
633 }
634 // Numeric updates to this column
635 VectorBlock<ScalarVector> dense_k(dense, k, m);
636 VectorBlock<IndexVector> segrep_k(segrep, nseg1, m-nseg1);
637 info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu);
638 if ( info )
639 {
640 m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() ";
641 m_info = NumericalIssue;
642 m_factorizationIsOk = false;
643 return;
644 }
645
646 // Copy the U-segments to ucol(*)
647 info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu);
648 if ( info )
649 {
650 m_lastError = "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() ";
651 m_info = NumericalIssue;
652 m_factorizationIsOk = false;
653 return;
654 }
655
656 // Form the L-segment
657 info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
658 if ( info )
659 {
660 m_lastError = "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT ";
661 std::ostringstream returnInfo;
662 returnInfo << info;
663 m_lastError += returnInfo.str();
664 m_info = NumericalIssue;
665 m_factorizationIsOk = false;
666 return;
667 }
668
669 // Update the determinant of the row permutation matrix
670 // FIXME: the following test is not correct, we should probably take iperm_c into account and pivrow is not directly the row pivot.
671 if (pivrow != jj) m_detPermR = -m_detPermR;
672
673 // Prune columns (0:jj-1) using column jj
674 Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu);
675
676 // Reset repfnz for this column
677 for (i = 0; i < nseg; i++)
678 {
679 irep = segrep(i);
680 repfnz_k(irep) = emptyIdxLU;
681 }
682 } // end SparseLU within the panel
683 jcol += panel_size; // Move to the next panel
684 } // end for -- end elimination
685
686 m_detPermR = m_perm_r.determinant();
687 m_detPermC = m_perm_c.determinant();
688
689 // Count the number of nonzeros in factors
690 Base::countnz(n, m_nnzL, m_nnzU, m_glu);
691 // Apply permutation to the L subscripts
692 Base::fixupL(n, m_perm_r.indices(), m_glu);
693
694 // Create supernode matrix L
695 m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup);
696 // Create the column major upper sparse matrix U;
697 new (&m_Ustore) MappedSparseMatrix<Scalar, ColMajor, Index> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() );
698
699 m_info = Success;
700 m_factorizationIsOk = true;
701}
702
703template<typename MappedSupernodalType>
704struct SparseLUMatrixLReturnType : internal::no_assignment_operator
705{
706 typedef typename MappedSupernodalType::Index Index;
707 typedef typename MappedSupernodalType::Scalar Scalar;
708 SparseLUMatrixLReturnType(const MappedSupernodalType& mapL) : m_mapL(mapL)
709 { }
710 Index rows() { return m_mapL.rows(); }
711 Index cols() { return m_mapL.cols(); }
712 template<typename Dest>
713 void solveInPlace( MatrixBase<Dest> &X) const
714 {
715 m_mapL.solveInPlace(X);
716 }
717 const MappedSupernodalType& m_mapL;
718};
719
720template<typename MatrixLType, typename MatrixUType>
721struct SparseLUMatrixUReturnType : internal::no_assignment_operator
722{
723 typedef typename MatrixLType::Index Index;
724 typedef typename MatrixLType::Scalar Scalar;
725 SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU)
726 : m_mapL(mapL),m_mapU(mapU)
727 { }
728 Index rows() { return m_mapL.rows(); }
729 Index cols() { return m_mapL.cols(); }
730
731 template<typename Dest> void solveInPlace(MatrixBase<Dest> &X) const
732 {
733 Index nrhs = X.cols();
734 Index n = X.rows();
735 // Backward solve with U
736 for (Index k = m_mapL.nsuper(); k >= 0; k--)
737 {
738 Index fsupc = m_mapL.supToCol()[k];
739 Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
740 Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
741 Index luptr = m_mapL.colIndexPtr()[fsupc];
742
743 if (nsupc == 1)
744 {
745 for (Index j = 0; j < nrhs; j++)
746 {
747 X(fsupc, j) /= m_mapL.valuePtr()[luptr];
748 }
749 }
750 else
751 {
752 Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
753 Map< Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
754 U = A.template triangularView<Upper>().solve(U);
755 }
756
757 for (Index j = 0; j < nrhs; ++j)
758 {
759 for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
760 {
761 typename MatrixUType::InnerIterator it(m_mapU, jcol);
762 for ( ; it; ++it)
763 {
764 Index irow = it.index();
765 X(irow, j) -= X(jcol, j) * it.value();
766 }
767 }
768 }
769 } // End For U-solve
770 }
771 const MatrixLType& m_mapL;
772 const MatrixUType& m_mapU;
773};
774
775namespace internal {
776
777template<typename _MatrixType, typename Derived, typename Rhs>
778struct solve_retval<SparseLU<_MatrixType,Derived>, Rhs>
779 : solve_retval_base<SparseLU<_MatrixType,Derived>, Rhs>
780{
781 typedef SparseLU<_MatrixType,Derived> Dec;
782 EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
783
784 template<typename Dest> void evalTo(Dest& dst) const
785 {
786 dec()._solve(rhs(),dst);
787 }
788};
789
790template<typename _MatrixType, typename Derived, typename Rhs>
791struct sparse_solve_retval<SparseLU<_MatrixType,Derived>, Rhs>
792 : sparse_solve_retval_base<SparseLU<_MatrixType,Derived>, Rhs>
793{
794 typedef SparseLU<_MatrixType,Derived> Dec;
795 EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
796
797 template<typename Dest> void evalTo(Dest& dst) const
798 {
799 this->defaultEvalTo(dst);
800 }
801};
802} // end namespace internal
803
804} // End namespace Eigen
805
806#endif
Note: See TracBrowser for help on using the repository browser.