| 1 | SUBROUTINE DTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
|
|---|
| 2 | * .. Scalar Arguments ..
|
|---|
| 3 | INTEGER INCX,K,LDA,N
|
|---|
| 4 | CHARACTER DIAG,TRANS,UPLO
|
|---|
| 5 | * ..
|
|---|
| 6 | * .. Array Arguments ..
|
|---|
| 7 | DOUBLE PRECISION A(LDA,*),X(*)
|
|---|
| 8 | * ..
|
|---|
| 9 | *
|
|---|
| 10 | * Purpose
|
|---|
| 11 | * =======
|
|---|
| 12 | *
|
|---|
| 13 | * DTBMV performs one of the matrix-vector operations
|
|---|
| 14 | *
|
|---|
| 15 | * x := A*x, or x := A'*x,
|
|---|
| 16 | *
|
|---|
| 17 | * where x is an n element vector and A is an n by n unit, or non-unit,
|
|---|
| 18 | * upper or lower triangular band matrix, with ( k + 1 ) diagonals.
|
|---|
| 19 | *
|
|---|
| 20 | * Arguments
|
|---|
| 21 | * ==========
|
|---|
| 22 | *
|
|---|
| 23 | * UPLO - CHARACTER*1.
|
|---|
| 24 | * On entry, UPLO specifies whether the matrix is an upper or
|
|---|
| 25 | * lower triangular matrix as follows:
|
|---|
| 26 | *
|
|---|
| 27 | * UPLO = 'U' or 'u' A is an upper triangular matrix.
|
|---|
| 28 | *
|
|---|
| 29 | * UPLO = 'L' or 'l' A is a lower triangular matrix.
|
|---|
| 30 | *
|
|---|
| 31 | * Unchanged on exit.
|
|---|
| 32 | *
|
|---|
| 33 | * TRANS - CHARACTER*1.
|
|---|
| 34 | * On entry, TRANS specifies the operation to be performed as
|
|---|
| 35 | * follows:
|
|---|
| 36 | *
|
|---|
| 37 | * TRANS = 'N' or 'n' x := A*x.
|
|---|
| 38 | *
|
|---|
| 39 | * TRANS = 'T' or 't' x := A'*x.
|
|---|
| 40 | *
|
|---|
| 41 | * TRANS = 'C' or 'c' x := A'*x.
|
|---|
| 42 | *
|
|---|
| 43 | * Unchanged on exit.
|
|---|
| 44 | *
|
|---|
| 45 | * DIAG - CHARACTER*1.
|
|---|
| 46 | * On entry, DIAG specifies whether or not A is unit
|
|---|
| 47 | * triangular as follows:
|
|---|
| 48 | *
|
|---|
| 49 | * DIAG = 'U' or 'u' A is assumed to be unit triangular.
|
|---|
| 50 | *
|
|---|
| 51 | * DIAG = 'N' or 'n' A is not assumed to be unit
|
|---|
| 52 | * triangular.
|
|---|
| 53 | *
|
|---|
| 54 | * Unchanged on exit.
|
|---|
| 55 | *
|
|---|
| 56 | * N - INTEGER.
|
|---|
| 57 | * On entry, N specifies the order of the matrix A.
|
|---|
| 58 | * N must be at least zero.
|
|---|
| 59 | * Unchanged on exit.
|
|---|
| 60 | *
|
|---|
| 61 | * K - INTEGER.
|
|---|
| 62 | * On entry with UPLO = 'U' or 'u', K specifies the number of
|
|---|
| 63 | * super-diagonals of the matrix A.
|
|---|
| 64 | * On entry with UPLO = 'L' or 'l', K specifies the number of
|
|---|
| 65 | * sub-diagonals of the matrix A.
|
|---|
| 66 | * K must satisfy 0 .le. K.
|
|---|
| 67 | * Unchanged on exit.
|
|---|
| 68 | *
|
|---|
| 69 | * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
|
|---|
| 70 | * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
|
|---|
| 71 | * by n part of the array A must contain the upper triangular
|
|---|
| 72 | * band part of the matrix of coefficients, supplied column by
|
|---|
| 73 | * column, with the leading diagonal of the matrix in row
|
|---|
| 74 | * ( k + 1 ) of the array, the first super-diagonal starting at
|
|---|
| 75 | * position 2 in row k, and so on. The top left k by k triangle
|
|---|
| 76 | * of the array A is not referenced.
|
|---|
| 77 | * The following program segment will transfer an upper
|
|---|
| 78 | * triangular band matrix from conventional full matrix storage
|
|---|
| 79 | * to band storage:
|
|---|
| 80 | *
|
|---|
| 81 | * DO 20, J = 1, N
|
|---|
| 82 | * M = K + 1 - J
|
|---|
| 83 | * DO 10, I = MAX( 1, J - K ), J
|
|---|
| 84 | * A( M + I, J ) = matrix( I, J )
|
|---|
| 85 | * 10 CONTINUE
|
|---|
| 86 | * 20 CONTINUE
|
|---|
| 87 | *
|
|---|
| 88 | * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
|
|---|
| 89 | * by n part of the array A must contain the lower triangular
|
|---|
| 90 | * band part of the matrix of coefficients, supplied column by
|
|---|
| 91 | * column, with the leading diagonal of the matrix in row 1 of
|
|---|
| 92 | * the array, the first sub-diagonal starting at position 1 in
|
|---|
| 93 | * row 2, and so on. The bottom right k by k triangle of the
|
|---|
| 94 | * array A is not referenced.
|
|---|
| 95 | * The following program segment will transfer a lower
|
|---|
| 96 | * triangular band matrix from conventional full matrix storage
|
|---|
| 97 | * to band storage:
|
|---|
| 98 | *
|
|---|
| 99 | * DO 20, J = 1, N
|
|---|
| 100 | * M = 1 - J
|
|---|
| 101 | * DO 10, I = J, MIN( N, J + K )
|
|---|
| 102 | * A( M + I, J ) = matrix( I, J )
|
|---|
| 103 | * 10 CONTINUE
|
|---|
| 104 | * 20 CONTINUE
|
|---|
| 105 | *
|
|---|
| 106 | * Note that when DIAG = 'U' or 'u' the elements of the array A
|
|---|
| 107 | * corresponding to the diagonal elements of the matrix are not
|
|---|
| 108 | * referenced, but are assumed to be unity.
|
|---|
| 109 | * Unchanged on exit.
|
|---|
| 110 | *
|
|---|
| 111 | * LDA - INTEGER.
|
|---|
| 112 | * On entry, LDA specifies the first dimension of A as declared
|
|---|
| 113 | * in the calling (sub) program. LDA must be at least
|
|---|
| 114 | * ( k + 1 ).
|
|---|
| 115 | * Unchanged on exit.
|
|---|
| 116 | *
|
|---|
| 117 | * X - DOUBLE PRECISION array of dimension at least
|
|---|
| 118 | * ( 1 + ( n - 1 )*abs( INCX ) ).
|
|---|
| 119 | * Before entry, the incremented array X must contain the n
|
|---|
| 120 | * element vector x. On exit, X is overwritten with the
|
|---|
| 121 | * tranformed vector x.
|
|---|
| 122 | *
|
|---|
| 123 | * INCX - INTEGER.
|
|---|
| 124 | * On entry, INCX specifies the increment for the elements of
|
|---|
| 125 | * X. INCX must not be zero.
|
|---|
| 126 | * Unchanged on exit.
|
|---|
| 127 | *
|
|---|
| 128 | * Further Details
|
|---|
| 129 | * ===============
|
|---|
| 130 | *
|
|---|
| 131 | * Level 2 Blas routine.
|
|---|
| 132 | *
|
|---|
| 133 | * -- Written on 22-October-1986.
|
|---|
| 134 | * Jack Dongarra, Argonne National Lab.
|
|---|
| 135 | * Jeremy Du Croz, Nag Central Office.
|
|---|
| 136 | * Sven Hammarling, Nag Central Office.
|
|---|
| 137 | * Richard Hanson, Sandia National Labs.
|
|---|
| 138 | *
|
|---|
| 139 | * =====================================================================
|
|---|
| 140 | *
|
|---|
| 141 | * .. Parameters ..
|
|---|
| 142 | DOUBLE PRECISION ZERO
|
|---|
| 143 | PARAMETER (ZERO=0.0D+0)
|
|---|
| 144 | * ..
|
|---|
| 145 | * .. Local Scalars ..
|
|---|
| 146 | DOUBLE PRECISION TEMP
|
|---|
| 147 | INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
|
|---|
| 148 | LOGICAL NOUNIT
|
|---|
| 149 | * ..
|
|---|
| 150 | * .. External Functions ..
|
|---|
| 151 | LOGICAL LSAME
|
|---|
| 152 | EXTERNAL LSAME
|
|---|
| 153 | * ..
|
|---|
| 154 | * .. External Subroutines ..
|
|---|
| 155 | EXTERNAL XERBLA
|
|---|
| 156 | * ..
|
|---|
| 157 | * .. Intrinsic Functions ..
|
|---|
| 158 | INTRINSIC MAX,MIN
|
|---|
| 159 | * ..
|
|---|
| 160 | *
|
|---|
| 161 | * Test the input parameters.
|
|---|
| 162 | *
|
|---|
| 163 | INFO = 0
|
|---|
| 164 | IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
|
|---|
| 165 | INFO = 1
|
|---|
| 166 | ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
|
|---|
| 167 | + .NOT.LSAME(TRANS,'C')) THEN
|
|---|
| 168 | INFO = 2
|
|---|
| 169 | ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
|
|---|
| 170 | INFO = 3
|
|---|
| 171 | ELSE IF (N.LT.0) THEN
|
|---|
| 172 | INFO = 4
|
|---|
| 173 | ELSE IF (K.LT.0) THEN
|
|---|
| 174 | INFO = 5
|
|---|
| 175 | ELSE IF (LDA.LT. (K+1)) THEN
|
|---|
| 176 | INFO = 7
|
|---|
| 177 | ELSE IF (INCX.EQ.0) THEN
|
|---|
| 178 | INFO = 9
|
|---|
| 179 | END IF
|
|---|
| 180 | IF (INFO.NE.0) THEN
|
|---|
| 181 | CALL XERBLA('DTBMV ',INFO)
|
|---|
| 182 | RETURN
|
|---|
| 183 | END IF
|
|---|
| 184 | *
|
|---|
| 185 | * Quick return if possible.
|
|---|
| 186 | *
|
|---|
| 187 | IF (N.EQ.0) RETURN
|
|---|
| 188 | *
|
|---|
| 189 | NOUNIT = LSAME(DIAG,'N')
|
|---|
| 190 | *
|
|---|
| 191 | * Set up the start point in X if the increment is not unity. This
|
|---|
| 192 | * will be ( N - 1 )*INCX too small for descending loops.
|
|---|
| 193 | *
|
|---|
| 194 | IF (INCX.LE.0) THEN
|
|---|
| 195 | KX = 1 - (N-1)*INCX
|
|---|
| 196 | ELSE IF (INCX.NE.1) THEN
|
|---|
| 197 | KX = 1
|
|---|
| 198 | END IF
|
|---|
| 199 | *
|
|---|
| 200 | * Start the operations. In this version the elements of A are
|
|---|
| 201 | * accessed sequentially with one pass through A.
|
|---|
| 202 | *
|
|---|
| 203 | IF (LSAME(TRANS,'N')) THEN
|
|---|
| 204 | *
|
|---|
| 205 | * Form x := A*x.
|
|---|
| 206 | *
|
|---|
| 207 | IF (LSAME(UPLO,'U')) THEN
|
|---|
| 208 | KPLUS1 = K + 1
|
|---|
| 209 | IF (INCX.EQ.1) THEN
|
|---|
| 210 | DO 20 J = 1,N
|
|---|
| 211 | IF (X(J).NE.ZERO) THEN
|
|---|
| 212 | TEMP = X(J)
|
|---|
| 213 | L = KPLUS1 - J
|
|---|
| 214 | DO 10 I = MAX(1,J-K),J - 1
|
|---|
| 215 | X(I) = X(I) + TEMP*A(L+I,J)
|
|---|
| 216 | 10 CONTINUE
|
|---|
| 217 | IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J)
|
|---|
| 218 | END IF
|
|---|
| 219 | 20 CONTINUE
|
|---|
| 220 | ELSE
|
|---|
| 221 | JX = KX
|
|---|
| 222 | DO 40 J = 1,N
|
|---|
| 223 | IF (X(JX).NE.ZERO) THEN
|
|---|
| 224 | TEMP = X(JX)
|
|---|
| 225 | IX = KX
|
|---|
| 226 | L = KPLUS1 - J
|
|---|
| 227 | DO 30 I = MAX(1,J-K),J - 1
|
|---|
| 228 | X(IX) = X(IX) + TEMP*A(L+I,J)
|
|---|
| 229 | IX = IX + INCX
|
|---|
| 230 | 30 CONTINUE
|
|---|
| 231 | IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J)
|
|---|
| 232 | END IF
|
|---|
| 233 | JX = JX + INCX
|
|---|
| 234 | IF (J.GT.K) KX = KX + INCX
|
|---|
| 235 | 40 CONTINUE
|
|---|
| 236 | END IF
|
|---|
| 237 | ELSE
|
|---|
| 238 | IF (INCX.EQ.1) THEN
|
|---|
| 239 | DO 60 J = N,1,-1
|
|---|
| 240 | IF (X(J).NE.ZERO) THEN
|
|---|
| 241 | TEMP = X(J)
|
|---|
| 242 | L = 1 - J
|
|---|
| 243 | DO 50 I = MIN(N,J+K),J + 1,-1
|
|---|
| 244 | X(I) = X(I) + TEMP*A(L+I,J)
|
|---|
| 245 | 50 CONTINUE
|
|---|
| 246 | IF (NOUNIT) X(J) = X(J)*A(1,J)
|
|---|
| 247 | END IF
|
|---|
| 248 | 60 CONTINUE
|
|---|
| 249 | ELSE
|
|---|
| 250 | KX = KX + (N-1)*INCX
|
|---|
| 251 | JX = KX
|
|---|
| 252 | DO 80 J = N,1,-1
|
|---|
| 253 | IF (X(JX).NE.ZERO) THEN
|
|---|
| 254 | TEMP = X(JX)
|
|---|
| 255 | IX = KX
|
|---|
| 256 | L = 1 - J
|
|---|
| 257 | DO 70 I = MIN(N,J+K),J + 1,-1
|
|---|
| 258 | X(IX) = X(IX) + TEMP*A(L+I,J)
|
|---|
| 259 | IX = IX - INCX
|
|---|
| 260 | 70 CONTINUE
|
|---|
| 261 | IF (NOUNIT) X(JX) = X(JX)*A(1,J)
|
|---|
| 262 | END IF
|
|---|
| 263 | JX = JX - INCX
|
|---|
| 264 | IF ((N-J).GE.K) KX = KX - INCX
|
|---|
| 265 | 80 CONTINUE
|
|---|
| 266 | END IF
|
|---|
| 267 | END IF
|
|---|
| 268 | ELSE
|
|---|
| 269 | *
|
|---|
| 270 | * Form x := A'*x.
|
|---|
| 271 | *
|
|---|
| 272 | IF (LSAME(UPLO,'U')) THEN
|
|---|
| 273 | KPLUS1 = K + 1
|
|---|
| 274 | IF (INCX.EQ.1) THEN
|
|---|
| 275 | DO 100 J = N,1,-1
|
|---|
| 276 | TEMP = X(J)
|
|---|
| 277 | L = KPLUS1 - J
|
|---|
| 278 | IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
|
|---|
| 279 | DO 90 I = J - 1,MAX(1,J-K),-1
|
|---|
| 280 | TEMP = TEMP + A(L+I,J)*X(I)
|
|---|
| 281 | 90 CONTINUE
|
|---|
| 282 | X(J) = TEMP
|
|---|
| 283 | 100 CONTINUE
|
|---|
| 284 | ELSE
|
|---|
| 285 | KX = KX + (N-1)*INCX
|
|---|
| 286 | JX = KX
|
|---|
| 287 | DO 120 J = N,1,-1
|
|---|
| 288 | TEMP = X(JX)
|
|---|
| 289 | KX = KX - INCX
|
|---|
| 290 | IX = KX
|
|---|
| 291 | L = KPLUS1 - J
|
|---|
| 292 | IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
|
|---|
| 293 | DO 110 I = J - 1,MAX(1,J-K),-1
|
|---|
| 294 | TEMP = TEMP + A(L+I,J)*X(IX)
|
|---|
| 295 | IX = IX - INCX
|
|---|
| 296 | 110 CONTINUE
|
|---|
| 297 | X(JX) = TEMP
|
|---|
| 298 | JX = JX - INCX
|
|---|
| 299 | 120 CONTINUE
|
|---|
| 300 | END IF
|
|---|
| 301 | ELSE
|
|---|
| 302 | IF (INCX.EQ.1) THEN
|
|---|
| 303 | DO 140 J = 1,N
|
|---|
| 304 | TEMP = X(J)
|
|---|
| 305 | L = 1 - J
|
|---|
| 306 | IF (NOUNIT) TEMP = TEMP*A(1,J)
|
|---|
| 307 | DO 130 I = J + 1,MIN(N,J+K)
|
|---|
| 308 | TEMP = TEMP + A(L+I,J)*X(I)
|
|---|
| 309 | 130 CONTINUE
|
|---|
| 310 | X(J) = TEMP
|
|---|
| 311 | 140 CONTINUE
|
|---|
| 312 | ELSE
|
|---|
| 313 | JX = KX
|
|---|
| 314 | DO 160 J = 1,N
|
|---|
| 315 | TEMP = X(JX)
|
|---|
| 316 | KX = KX + INCX
|
|---|
| 317 | IX = KX
|
|---|
| 318 | L = 1 - J
|
|---|
| 319 | IF (NOUNIT) TEMP = TEMP*A(1,J)
|
|---|
| 320 | DO 150 I = J + 1,MIN(N,J+K)
|
|---|
| 321 | TEMP = TEMP + A(L+I,J)*X(IX)
|
|---|
| 322 | IX = IX + INCX
|
|---|
| 323 | 150 CONTINUE
|
|---|
| 324 | X(JX) = TEMP
|
|---|
| 325 | JX = JX + INCX
|
|---|
| 326 | 160 CONTINUE
|
|---|
| 327 | END IF
|
|---|
| 328 | END IF
|
|---|
| 329 | END IF
|
|---|
| 330 | *
|
|---|
| 331 | RETURN
|
|---|
| 332 | *
|
|---|
| 333 | * End of DTBMV .
|
|---|
| 334 | *
|
|---|
| 335 | END
|
|---|