source: pacpussensors/trunk/Vislab/lib3dv/eigen/blas/level1_cplx_impl.h@ 136

Last change on this file since 136 was 136, checked in by ldecherf, 7 years ago

Doc

File size: 4.7 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#include "common.h"
11
12struct scalar_norm1_op {
13 typedef RealScalar result_type;
14 EIGEN_EMPTY_STRUCT_CTOR(scalar_norm1_op)
15 inline RealScalar operator() (const Scalar& a) const { return numext::norm1(a); }
16};
17namespace Eigen {
18 namespace internal {
19 template<> struct functor_traits<scalar_norm1_op >
20 {
21 enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 };
22 };
23 }
24}
25
26// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
27// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
28RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),asum_)(int *n, RealScalar *px, int *incx)
29{
30// std::cerr << "__asum " << *n << " " << *incx << "\n";
31 Complex* x = reinterpret_cast<Complex*>(px);
32
33 if(*n<=0) return 0;
34
35 if(*incx==1) return vector(x,*n).unaryExpr<scalar_norm1_op>().sum();
36 else return vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum();
37}
38
39// computes a dot product of a conjugated vector with another vector.
40int EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
41{
42// std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n";
43
44 if(*n<=0) return 0;
45
46 Scalar* x = reinterpret_cast<Scalar*>(px);
47 Scalar* y = reinterpret_cast<Scalar*>(py);
48 Scalar* res = reinterpret_cast<Scalar*>(pres);
49
50 if(*incx==1 && *incy==1) *res = (vector(x,*n).dot(vector(y,*n)));
51 else if(*incx>0 && *incy>0) *res = (vector(x,*n,*incx).dot(vector(y,*n,*incy)));
52 else if(*incx<0 && *incy>0) *res = (vector(x,*n,-*incx).reverse().dot(vector(y,*n,*incy)));
53 else if(*incx>0 && *incy<0) *res = (vector(x,*n,*incx).dot(vector(y,*n,-*incy).reverse()));
54 else if(*incx<0 && *incy<0) *res = (vector(x,*n,-*incx).reverse().dot(vector(y,*n,-*incy).reverse()));
55 return 0;
56}
57
58// computes a vector-vector dot product without complex conjugation.
59int EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
60{
61// std::cerr << "_dotu " << *n << " " << *incx << " " << *incy << "\n";
62
63 if(*n<=0) return 0;
64
65 Scalar* x = reinterpret_cast<Scalar*>(px);
66 Scalar* y = reinterpret_cast<Scalar*>(py);
67 Scalar* res = reinterpret_cast<Scalar*>(pres);
68
69 if(*incx==1 && *incy==1) *res = (vector(x,*n).cwiseProduct(vector(y,*n))).sum();
70 else if(*incx>0 && *incy>0) *res = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum();
71 else if(*incx<0 && *incy>0) *res = (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,*incy))).sum();
72 else if(*incx>0 && *incy<0) *res = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
73 else if(*incx<0 && *incy<0) *res = (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
74 return 0;
75}
76
77RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),nrm2_)(int *n, RealScalar *px, int *incx)
78{
79// std::cerr << "__nrm2 " << *n << " " << *incx << "\n";
80 if(*n<=0) return 0;
81
82 Scalar* x = reinterpret_cast<Scalar*>(px);
83
84 if(*incx==1)
85 return vector(x,*n).stableNorm();
86
87 return vector(x,*n,*incx).stableNorm();
88}
89
90int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),rot_)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
91{
92 if(*n<=0) return 0;
93
94 Scalar* x = reinterpret_cast<Scalar*>(px);
95 Scalar* y = reinterpret_cast<Scalar*>(py);
96 RealScalar c = *pc;
97 RealScalar s = *ps;
98
99 StridedVectorType vx(vector(x,*n,std::abs(*incx)));
100 StridedVectorType vy(vector(y,*n,std::abs(*incy)));
101
102 Reverse<StridedVectorType> rvx(vx);
103 Reverse<StridedVectorType> rvy(vy);
104
105 // TODO implement mixed real-scalar rotations
106 if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s));
107 else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s));
108 else internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation<Scalar>(c,s));
109
110 return 0;
111}
112
113int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),scal_)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
114{
115 if(*n<=0) return 0;
116
117 Scalar* x = reinterpret_cast<Scalar*>(px);
118 RealScalar alpha = *palpha;
119
120// std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n";
121
122 if(*incx==1) vector(x,*n) *= alpha;
123 else vector(x,*n,std::abs(*incx)) *= alpha;
124
125 return 0;
126}
127
Note: See TracBrowser for help on using the repository browser.