1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
---|
5 | //
|
---|
6 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
9 |
|
---|
10 | #include "common.h"
|
---|
11 |
|
---|
12 | int EIGEN_BLAS_FUNC(gemm)(char *opa, char *opb, int *m, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc)
|
---|
13 | {
|
---|
14 | // std::cerr << "in gemm " << *opa << " " << *opb << " " << *m << " " << *n << " " << *k << " " << *lda << " " << *ldb << " " << *ldc << " " << *palpha << " " << *pbeta << "\n";
|
---|
15 | typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, Scalar, internal::level3_blocking<Scalar,Scalar>&, Eigen::internal::GemmParallelInfo<DenseIndex>*);
|
---|
16 | static functype func[12];
|
---|
17 |
|
---|
18 | static bool init = false;
|
---|
19 | if(!init)
|
---|
20 | {
|
---|
21 | for(int k=0; k<12; ++k)
|
---|
22 | func[k] = 0;
|
---|
23 | func[NOTR | (NOTR << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,ColMajor,false,Scalar,ColMajor,false,ColMajor>::run);
|
---|
24 | func[TR | (NOTR << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,false,Scalar,ColMajor,false,ColMajor>::run);
|
---|
25 | func[ADJ | (NOTR << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,false,ColMajor>::run);
|
---|
26 | func[NOTR | (TR << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,false,ColMajor>::run);
|
---|
27 | func[TR | (TR << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,false,Scalar,RowMajor,false,ColMajor>::run);
|
---|
28 | func[ADJ | (TR << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,RowMajor,false,ColMajor>::run);
|
---|
29 | func[NOTR | (ADJ << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,Conj, ColMajor>::run);
|
---|
30 | func[TR | (ADJ << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,false,Scalar,RowMajor,Conj, ColMajor>::run);
|
---|
31 | func[ADJ | (ADJ << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,RowMajor,Conj, ColMajor>::run);
|
---|
32 | init = true;
|
---|
33 | }
|
---|
34 |
|
---|
35 | Scalar* a = reinterpret_cast<Scalar*>(pa);
|
---|
36 | Scalar* b = reinterpret_cast<Scalar*>(pb);
|
---|
37 | Scalar* c = reinterpret_cast<Scalar*>(pc);
|
---|
38 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
---|
39 | Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
---|
40 |
|
---|
41 | int info = 0;
|
---|
42 | if(OP(*opa)==INVALID) info = 1;
|
---|
43 | else if(OP(*opb)==INVALID) info = 2;
|
---|
44 | else if(*m<0) info = 3;
|
---|
45 | else if(*n<0) info = 4;
|
---|
46 | else if(*k<0) info = 5;
|
---|
47 | else if(*lda<std::max(1,(OP(*opa)==NOTR)?*m:*k)) info = 8;
|
---|
48 | else if(*ldb<std::max(1,(OP(*opb)==NOTR)?*k:*n)) info = 10;
|
---|
49 | else if(*ldc<std::max(1,*m)) info = 13;
|
---|
50 | if(info)
|
---|
51 | return xerbla_(SCALAR_SUFFIX_UP"GEMM ",&info,6);
|
---|
52 |
|
---|
53 | if(beta!=Scalar(1))
|
---|
54 | {
|
---|
55 | if(beta==Scalar(0)) matrix(c, *m, *n, *ldc).setZero();
|
---|
56 | else matrix(c, *m, *n, *ldc) *= beta;
|
---|
57 | }
|
---|
58 |
|
---|
59 | internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic> blocking(*m,*n,*k);
|
---|
60 |
|
---|
61 | int code = OP(*opa) | (OP(*opb) << 2);
|
---|
62 | func[code](*m, *n, *k, a, *lda, b, *ldb, c, *ldc, alpha, blocking, 0);
|
---|
63 | return 0;
|
---|
64 | }
|
---|
65 |
|
---|
66 | int EIGEN_BLAS_FUNC(trsm)(char *side, char *uplo, char *opa, char *diag, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb)
|
---|
67 | {
|
---|
68 | // std::cerr << "in trsm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << "," << *n << " " << *palpha << " " << *lda << " " << *ldb<< "\n";
|
---|
69 | typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, internal::level3_blocking<Scalar,Scalar>&);
|
---|
70 | static functype func[32];
|
---|
71 |
|
---|
72 | static bool init = false;
|
---|
73 | if(!init)
|
---|
74 | {
|
---|
75 | for(int k=0; k<32; ++k)
|
---|
76 | func[k] = 0;
|
---|
77 |
|
---|
78 | func[NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|0, false,ColMajor,ColMajor>::run);
|
---|
79 | func[TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|0, false,RowMajor,ColMajor>::run);
|
---|
80 | func[ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|0, Conj, RowMajor,ColMajor>::run);
|
---|
81 |
|
---|
82 | func[NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|0, false,ColMajor,ColMajor>::run);
|
---|
83 | func[TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|0, false,RowMajor,ColMajor>::run);
|
---|
84 | func[ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|0, Conj, RowMajor,ColMajor>::run);
|
---|
85 |
|
---|
86 | func[NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|0, false,ColMajor,ColMajor>::run);
|
---|
87 | func[TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|0, false,RowMajor,ColMajor>::run);
|
---|
88 | func[ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|0, Conj, RowMajor,ColMajor>::run);
|
---|
89 |
|
---|
90 | func[NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|0, false,ColMajor,ColMajor>::run);
|
---|
91 | func[TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|0, false,RowMajor,ColMajor>::run);
|
---|
92 | func[ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|0, Conj, RowMajor,ColMajor>::run);
|
---|
93 |
|
---|
94 |
|
---|
95 | func[NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|UnitDiag,false,ColMajor,ColMajor>::run);
|
---|
96 | func[TR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|UnitDiag,false,RowMajor,ColMajor>::run);
|
---|
97 | func[ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|UnitDiag,Conj, RowMajor,ColMajor>::run);
|
---|
98 |
|
---|
99 | func[NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|UnitDiag,false,ColMajor,ColMajor>::run);
|
---|
100 | func[TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|UnitDiag,false,RowMajor,ColMajor>::run);
|
---|
101 | func[ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|UnitDiag,Conj, RowMajor,ColMajor>::run);
|
---|
102 |
|
---|
103 | func[NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|UnitDiag,false,ColMajor,ColMajor>::run);
|
---|
104 | func[TR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|UnitDiag,false,RowMajor,ColMajor>::run);
|
---|
105 | func[ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|UnitDiag,Conj, RowMajor,ColMajor>::run);
|
---|
106 |
|
---|
107 | func[NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|UnitDiag,false,ColMajor,ColMajor>::run);
|
---|
108 | func[TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|UnitDiag,false,RowMajor,ColMajor>::run);
|
---|
109 | func[ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|UnitDiag,Conj, RowMajor,ColMajor>::run);
|
---|
110 |
|
---|
111 | init = true;
|
---|
112 | }
|
---|
113 |
|
---|
114 | Scalar* a = reinterpret_cast<Scalar*>(pa);
|
---|
115 | Scalar* b = reinterpret_cast<Scalar*>(pb);
|
---|
116 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
---|
117 |
|
---|
118 | int info = 0;
|
---|
119 | if(SIDE(*side)==INVALID) info = 1;
|
---|
120 | else if(UPLO(*uplo)==INVALID) info = 2;
|
---|
121 | else if(OP(*opa)==INVALID) info = 3;
|
---|
122 | else if(DIAG(*diag)==INVALID) info = 4;
|
---|
123 | else if(*m<0) info = 5;
|
---|
124 | else if(*n<0) info = 6;
|
---|
125 | else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n)) info = 9;
|
---|
126 | else if(*ldb<std::max(1,*m)) info = 11;
|
---|
127 | if(info)
|
---|
128 | return xerbla_(SCALAR_SUFFIX_UP"TRSM ",&info,6);
|
---|
129 |
|
---|
130 | int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4);
|
---|
131 |
|
---|
132 | if(SIDE(*side)==LEFT)
|
---|
133 | {
|
---|
134 | internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*m);
|
---|
135 | func[code](*m, *n, a, *lda, b, *ldb, blocking);
|
---|
136 | }
|
---|
137 | else
|
---|
138 | {
|
---|
139 | internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*n);
|
---|
140 | func[code](*n, *m, a, *lda, b, *ldb, blocking);
|
---|
141 | }
|
---|
142 |
|
---|
143 | if(alpha!=Scalar(1))
|
---|
144 | matrix(b,*m,*n,*ldb) *= alpha;
|
---|
145 |
|
---|
146 | return 0;
|
---|
147 | }
|
---|
148 |
|
---|
149 |
|
---|
150 | // b = alpha*op(a)*b for side = 'L'or'l'
|
---|
151 | // b = alpha*b*op(a) for side = 'R'or'r'
|
---|
152 | int EIGEN_BLAS_FUNC(trmm)(char *side, char *uplo, char *opa, char *diag, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb)
|
---|
153 | {
|
---|
154 | // std::cerr << "in trmm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << " " << *n << " " << *lda << " " << *ldb << " " << *palpha << "\n";
|
---|
155 | typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, const Scalar&, internal::level3_blocking<Scalar,Scalar>&);
|
---|
156 | static functype func[32];
|
---|
157 | static bool init = false;
|
---|
158 | if(!init)
|
---|
159 | {
|
---|
160 | for(int k=0; k<32; ++k)
|
---|
161 | func[k] = 0;
|
---|
162 |
|
---|
163 | func[NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0, true, ColMajor,false,ColMajor,false,ColMajor>::run);
|
---|
164 | func[TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0, true, RowMajor,false,ColMajor,false,ColMajor>::run);
|
---|
165 | func[ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0, true, RowMajor,Conj, ColMajor,false,ColMajor>::run);
|
---|
166 |
|
---|
167 | func[NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0, false,ColMajor,false,ColMajor,false,ColMajor>::run);
|
---|
168 | func[TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0, false,ColMajor,false,RowMajor,false,ColMajor>::run);
|
---|
169 | func[ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0, false,ColMajor,false,RowMajor,Conj, ColMajor>::run);
|
---|
170 |
|
---|
171 | func[NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0, true, ColMajor,false,ColMajor,false,ColMajor>::run);
|
---|
172 | func[TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0, true, RowMajor,false,ColMajor,false,ColMajor>::run);
|
---|
173 | func[ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0, true, RowMajor,Conj, ColMajor,false,ColMajor>::run);
|
---|
174 |
|
---|
175 | func[NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0, false,ColMajor,false,ColMajor,false,ColMajor>::run);
|
---|
176 | func[TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0, false,ColMajor,false,RowMajor,false,ColMajor>::run);
|
---|
177 | func[ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0, false,ColMajor,false,RowMajor,Conj, ColMajor>::run);
|
---|
178 |
|
---|
179 | func[NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,true, ColMajor,false,ColMajor,false,ColMajor>::run);
|
---|
180 | func[TR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,true, RowMajor,false,ColMajor,false,ColMajor>::run);
|
---|
181 | func[ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,true, RowMajor,Conj, ColMajor,false,ColMajor>::run);
|
---|
182 |
|
---|
183 | func[NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,false,ColMajor,false,ColMajor,false,ColMajor>::run);
|
---|
184 | func[TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,false,ColMajor,false,RowMajor,false,ColMajor>::run);
|
---|
185 | func[ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,false,ColMajor,false,RowMajor,Conj, ColMajor>::run);
|
---|
186 |
|
---|
187 | func[NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,true, ColMajor,false,ColMajor,false,ColMajor>::run);
|
---|
188 | func[TR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,true, RowMajor,false,ColMajor,false,ColMajor>::run);
|
---|
189 | func[ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,true, RowMajor,Conj, ColMajor,false,ColMajor>::run);
|
---|
190 |
|
---|
191 | func[NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,false,ColMajor,false,ColMajor,false,ColMajor>::run);
|
---|
192 | func[TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,false,ColMajor,false,RowMajor,false,ColMajor>::run);
|
---|
193 | func[ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,false,ColMajor,false,RowMajor,Conj, ColMajor>::run);
|
---|
194 |
|
---|
195 | init = true;
|
---|
196 | }
|
---|
197 |
|
---|
198 | Scalar* a = reinterpret_cast<Scalar*>(pa);
|
---|
199 | Scalar* b = reinterpret_cast<Scalar*>(pb);
|
---|
200 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
---|
201 |
|
---|
202 | int info = 0;
|
---|
203 | if(SIDE(*side)==INVALID) info = 1;
|
---|
204 | else if(UPLO(*uplo)==INVALID) info = 2;
|
---|
205 | else if(OP(*opa)==INVALID) info = 3;
|
---|
206 | else if(DIAG(*diag)==INVALID) info = 4;
|
---|
207 | else if(*m<0) info = 5;
|
---|
208 | else if(*n<0) info = 6;
|
---|
209 | else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n)) info = 9;
|
---|
210 | else if(*ldb<std::max(1,*m)) info = 11;
|
---|
211 | if(info)
|
---|
212 | return xerbla_(SCALAR_SUFFIX_UP"TRMM ",&info,6);
|
---|
213 |
|
---|
214 | int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4);
|
---|
215 |
|
---|
216 | if(*m==0 || *n==0)
|
---|
217 | return 1;
|
---|
218 |
|
---|
219 | // FIXME find a way to avoid this copy
|
---|
220 | Matrix<Scalar,Dynamic,Dynamic,ColMajor> tmp = matrix(b,*m,*n,*ldb);
|
---|
221 | matrix(b,*m,*n,*ldb).setZero();
|
---|
222 |
|
---|
223 | if(SIDE(*side)==LEFT)
|
---|
224 | {
|
---|
225 | internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*m);
|
---|
226 | func[code](*m, *n, *m, a, *lda, tmp.data(), tmp.outerStride(), b, *ldb, alpha, blocking);
|
---|
227 | }
|
---|
228 | else
|
---|
229 | {
|
---|
230 | internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*n);
|
---|
231 | func[code](*m, *n, *n, tmp.data(), tmp.outerStride(), a, *lda, b, *ldb, alpha, blocking);
|
---|
232 | }
|
---|
233 | return 1;
|
---|
234 | }
|
---|
235 |
|
---|
236 | // c = alpha*a*b + beta*c for side = 'L'or'l'
|
---|
237 | // c = alpha*b*a + beta*c for side = 'R'or'r
|
---|
238 | int EIGEN_BLAS_FUNC(symm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc)
|
---|
239 | {
|
---|
240 | // std::cerr << "in symm " << *side << " " << *uplo << " " << *m << "x" << *n << " lda:" << *lda << " ldb:" << *ldb << " ldc:" << *ldc << " alpha:" << *palpha << " beta:" << *pbeta << "\n";
|
---|
241 | Scalar* a = reinterpret_cast<Scalar*>(pa);
|
---|
242 | Scalar* b = reinterpret_cast<Scalar*>(pb);
|
---|
243 | Scalar* c = reinterpret_cast<Scalar*>(pc);
|
---|
244 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
---|
245 | Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
---|
246 |
|
---|
247 | int info = 0;
|
---|
248 | if(SIDE(*side)==INVALID) info = 1;
|
---|
249 | else if(UPLO(*uplo)==INVALID) info = 2;
|
---|
250 | else if(*m<0) info = 3;
|
---|
251 | else if(*n<0) info = 4;
|
---|
252 | else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n)) info = 7;
|
---|
253 | else if(*ldb<std::max(1,*m)) info = 9;
|
---|
254 | else if(*ldc<std::max(1,*m)) info = 12;
|
---|
255 | if(info)
|
---|
256 | return xerbla_(SCALAR_SUFFIX_UP"SYMM ",&info,6);
|
---|
257 |
|
---|
258 | if(beta!=Scalar(1))
|
---|
259 | {
|
---|
260 | if(beta==Scalar(0)) matrix(c, *m, *n, *ldc).setZero();
|
---|
261 | else matrix(c, *m, *n, *ldc) *= beta;
|
---|
262 | }
|
---|
263 |
|
---|
264 | if(*m==0 || *n==0)
|
---|
265 | {
|
---|
266 | return 1;
|
---|
267 | }
|
---|
268 |
|
---|
269 | #if ISCOMPLEX
|
---|
270 | // FIXME add support for symmetric complex matrix
|
---|
271 | int size = (SIDE(*side)==LEFT) ? (*m) : (*n);
|
---|
272 | Matrix<Scalar,Dynamic,Dynamic,ColMajor> matA(size,size);
|
---|
273 | if(UPLO(*uplo)==UP)
|
---|
274 | {
|
---|
275 | matA.triangularView<Upper>() = matrix(a,size,size,*lda);
|
---|
276 | matA.triangularView<Lower>() = matrix(a,size,size,*lda).transpose();
|
---|
277 | }
|
---|
278 | else if(UPLO(*uplo)==LO)
|
---|
279 | {
|
---|
280 | matA.triangularView<Lower>() = matrix(a,size,size,*lda);
|
---|
281 | matA.triangularView<Upper>() = matrix(a,size,size,*lda).transpose();
|
---|
282 | }
|
---|
283 | if(SIDE(*side)==LEFT)
|
---|
284 | matrix(c, *m, *n, *ldc) += alpha * matA * matrix(b, *m, *n, *ldb);
|
---|
285 | else if(SIDE(*side)==RIGHT)
|
---|
286 | matrix(c, *m, *n, *ldc) += alpha * matrix(b, *m, *n, *ldb) * matA;
|
---|
287 | #else
|
---|
288 | if(SIDE(*side)==LEFT)
|
---|
289 | if(UPLO(*uplo)==UP) internal::product_selfadjoint_matrix<Scalar, DenseIndex, RowMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha);
|
---|
290 | else if(UPLO(*uplo)==LO) internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha);
|
---|
291 | else return 0;
|
---|
292 | else if(SIDE(*side)==RIGHT)
|
---|
293 | if(UPLO(*uplo)==UP) internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor,false,false, RowMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha);
|
---|
294 | else if(UPLO(*uplo)==LO) internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor,false,false, ColMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha);
|
---|
295 | else return 0;
|
---|
296 | else
|
---|
297 | return 0;
|
---|
298 | #endif
|
---|
299 |
|
---|
300 | return 0;
|
---|
301 | }
|
---|
302 |
|
---|
303 | // c = alpha*a*a' + beta*c for op = 'N'or'n'
|
---|
304 | // c = alpha*a'*a + beta*c for op = 'T'or't','C'or'c'
|
---|
305 | int EIGEN_BLAS_FUNC(syrk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc)
|
---|
306 | {
|
---|
307 | // std::cerr << "in syrk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " " << *pbeta << " " << *ldc << "\n";
|
---|
308 | #if !ISCOMPLEX
|
---|
309 | typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, const Scalar&);
|
---|
310 | static functype func[8];
|
---|
311 |
|
---|
312 | static bool init = false;
|
---|
313 | if(!init)
|
---|
314 | {
|
---|
315 | for(int k=0; k<8; ++k)
|
---|
316 | func[k] = 0;
|
---|
317 |
|
---|
318 | func[NOTR | (UP << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,ColMajor,Conj, Upper>::run);
|
---|
319 | func[TR | (UP << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,false,Scalar,ColMajor,ColMajor,Conj, Upper>::run);
|
---|
320 | func[ADJ | (UP << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,ColMajor,false,Upper>::run);
|
---|
321 |
|
---|
322 | func[NOTR | (LO << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,ColMajor,Conj, Lower>::run);
|
---|
323 | func[TR | (LO << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,false,Scalar,ColMajor,ColMajor,Conj, Lower>::run);
|
---|
324 | func[ADJ | (LO << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,ColMajor,false,Lower>::run);
|
---|
325 |
|
---|
326 | init = true;
|
---|
327 | }
|
---|
328 | #endif
|
---|
329 |
|
---|
330 | Scalar* a = reinterpret_cast<Scalar*>(pa);
|
---|
331 | Scalar* c = reinterpret_cast<Scalar*>(pc);
|
---|
332 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
---|
333 | Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
---|
334 |
|
---|
335 | int info = 0;
|
---|
336 | if(UPLO(*uplo)==INVALID) info = 1;
|
---|
337 | else if(OP(*op)==INVALID) info = 2;
|
---|
338 | else if(*n<0) info = 3;
|
---|
339 | else if(*k<0) info = 4;
|
---|
340 | else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 7;
|
---|
341 | else if(*ldc<std::max(1,*n)) info = 10;
|
---|
342 | if(info)
|
---|
343 | return xerbla_(SCALAR_SUFFIX_UP"SYRK ",&info,6);
|
---|
344 |
|
---|
345 | if(beta!=Scalar(1))
|
---|
346 | {
|
---|
347 | if(UPLO(*uplo)==UP)
|
---|
348 | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
|
---|
349 | else matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta;
|
---|
350 | else
|
---|
351 | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
|
---|
352 | else matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta;
|
---|
353 | }
|
---|
354 |
|
---|
355 | #if ISCOMPLEX
|
---|
356 | // FIXME add support for symmetric complex matrix
|
---|
357 | if(UPLO(*uplo)==UP)
|
---|
358 | {
|
---|
359 | if(OP(*op)==NOTR)
|
---|
360 | matrix(c, *n, *n, *ldc).triangularView<Upper>() += alpha * matrix(a,*n,*k,*lda) * matrix(a,*n,*k,*lda).transpose();
|
---|
361 | else
|
---|
362 | matrix(c, *n, *n, *ldc).triangularView<Upper>() += alpha * matrix(a,*k,*n,*lda).transpose() * matrix(a,*k,*n,*lda);
|
---|
363 | }
|
---|
364 | else
|
---|
365 | {
|
---|
366 | if(OP(*op)==NOTR)
|
---|
367 | matrix(c, *n, *n, *ldc).triangularView<Lower>() += alpha * matrix(a,*n,*k,*lda) * matrix(a,*n,*k,*lda).transpose();
|
---|
368 | else
|
---|
369 | matrix(c, *n, *n, *ldc).triangularView<Lower>() += alpha * matrix(a,*k,*n,*lda).transpose() * matrix(a,*k,*n,*lda);
|
---|
370 | }
|
---|
371 | #else
|
---|
372 | int code = OP(*op) | (UPLO(*uplo) << 2);
|
---|
373 | func[code](*n, *k, a, *lda, a, *lda, c, *ldc, alpha);
|
---|
374 | #endif
|
---|
375 |
|
---|
376 | return 0;
|
---|
377 | }
|
---|
378 |
|
---|
379 | // c = alpha*a*b' + alpha*b*a' + beta*c for op = 'N'or'n'
|
---|
380 | // c = alpha*a'*b + alpha*b'*a + beta*c for op = 'T'or't'
|
---|
381 | int EIGEN_BLAS_FUNC(syr2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc)
|
---|
382 | {
|
---|
383 | Scalar* a = reinterpret_cast<Scalar*>(pa);
|
---|
384 | Scalar* b = reinterpret_cast<Scalar*>(pb);
|
---|
385 | Scalar* c = reinterpret_cast<Scalar*>(pc);
|
---|
386 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
---|
387 | Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
---|
388 |
|
---|
389 | int info = 0;
|
---|
390 | if(UPLO(*uplo)==INVALID) info = 1;
|
---|
391 | else if(OP(*op)==INVALID) info = 2;
|
---|
392 | else if(*n<0) info = 3;
|
---|
393 | else if(*k<0) info = 4;
|
---|
394 | else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 7;
|
---|
395 | else if(*ldb<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 9;
|
---|
396 | else if(*ldc<std::max(1,*n)) info = 12;
|
---|
397 | if(info)
|
---|
398 | return xerbla_(SCALAR_SUFFIX_UP"SYR2K",&info,6);
|
---|
399 |
|
---|
400 | if(beta!=Scalar(1))
|
---|
401 | {
|
---|
402 | if(UPLO(*uplo)==UP)
|
---|
403 | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
|
---|
404 | else matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta;
|
---|
405 | else
|
---|
406 | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
|
---|
407 | else matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta;
|
---|
408 | }
|
---|
409 |
|
---|
410 | if(*k==0)
|
---|
411 | return 1;
|
---|
412 |
|
---|
413 | if(OP(*op)==NOTR)
|
---|
414 | {
|
---|
415 | if(UPLO(*uplo)==UP)
|
---|
416 | {
|
---|
417 | matrix(c, *n, *n, *ldc).triangularView<Upper>()
|
---|
418 | += alpha *matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).transpose()
|
---|
419 | + alpha*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).transpose();
|
---|
420 | }
|
---|
421 | else if(UPLO(*uplo)==LO)
|
---|
422 | matrix(c, *n, *n, *ldc).triangularView<Lower>()
|
---|
423 | += alpha*matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).transpose()
|
---|
424 | + alpha*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).transpose();
|
---|
425 | }
|
---|
426 | else if(OP(*op)==TR || OP(*op)==ADJ)
|
---|
427 | {
|
---|
428 | if(UPLO(*uplo)==UP)
|
---|
429 | matrix(c, *n, *n, *ldc).triangularView<Upper>()
|
---|
430 | += alpha*matrix(a, *k, *n, *lda).transpose()*matrix(b, *k, *n, *ldb)
|
---|
431 | + alpha*matrix(b, *k, *n, *ldb).transpose()*matrix(a, *k, *n, *lda);
|
---|
432 | else if(UPLO(*uplo)==LO)
|
---|
433 | matrix(c, *n, *n, *ldc).triangularView<Lower>()
|
---|
434 | += alpha*matrix(a, *k, *n, *lda).transpose()*matrix(b, *k, *n, *ldb)
|
---|
435 | + alpha*matrix(b, *k, *n, *ldb).transpose()*matrix(a, *k, *n, *lda);
|
---|
436 | }
|
---|
437 |
|
---|
438 | return 0;
|
---|
439 | }
|
---|
440 |
|
---|
441 |
|
---|
442 | #if ISCOMPLEX
|
---|
443 |
|
---|
444 | // c = alpha*a*b + beta*c for side = 'L'or'l'
|
---|
445 | // c = alpha*b*a + beta*c for side = 'R'or'r
|
---|
446 | int EIGEN_BLAS_FUNC(hemm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc)
|
---|
447 | {
|
---|
448 | Scalar* a = reinterpret_cast<Scalar*>(pa);
|
---|
449 | Scalar* b = reinterpret_cast<Scalar*>(pb);
|
---|
450 | Scalar* c = reinterpret_cast<Scalar*>(pc);
|
---|
451 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
---|
452 | Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
---|
453 |
|
---|
454 | // std::cerr << "in hemm " << *side << " " << *uplo << " " << *m << " " << *n << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n";
|
---|
455 |
|
---|
456 | int info = 0;
|
---|
457 | if(SIDE(*side)==INVALID) info = 1;
|
---|
458 | else if(UPLO(*uplo)==INVALID) info = 2;
|
---|
459 | else if(*m<0) info = 3;
|
---|
460 | else if(*n<0) info = 4;
|
---|
461 | else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n)) info = 7;
|
---|
462 | else if(*ldb<std::max(1,*m)) info = 9;
|
---|
463 | else if(*ldc<std::max(1,*m)) info = 12;
|
---|
464 | if(info)
|
---|
465 | return xerbla_(SCALAR_SUFFIX_UP"HEMM ",&info,6);
|
---|
466 |
|
---|
467 | if(beta==Scalar(0)) matrix(c, *m, *n, *ldc).setZero();
|
---|
468 | else if(beta!=Scalar(1)) matrix(c, *m, *n, *ldc) *= beta;
|
---|
469 |
|
---|
470 | if(*m==0 || *n==0)
|
---|
471 | {
|
---|
472 | return 1;
|
---|
473 | }
|
---|
474 |
|
---|
475 | if(SIDE(*side)==LEFT)
|
---|
476 | {
|
---|
477 | if(UPLO(*uplo)==UP) internal::product_selfadjoint_matrix<Scalar,DenseIndex,RowMajor,true,Conj, ColMajor,false,false, ColMajor>
|
---|
478 | ::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha);
|
---|
479 | else if(UPLO(*uplo)==LO) internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,true,false, ColMajor,false,false, ColMajor>
|
---|
480 | ::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha);
|
---|
481 | else return 0;
|
---|
482 | }
|
---|
483 | else if(SIDE(*side)==RIGHT)
|
---|
484 | {
|
---|
485 | if(UPLO(*uplo)==UP) matrix(c,*m,*n,*ldc) += alpha * matrix(b,*m,*n,*ldb) * matrix(a,*n,*n,*lda).selfadjointView<Upper>();/*internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,false,false, RowMajor,true,Conj, ColMajor>
|
---|
486 | ::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha);*/
|
---|
487 | else if(UPLO(*uplo)==LO) internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,false,false, ColMajor,true,false, ColMajor>
|
---|
488 | ::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha);
|
---|
489 | else return 0;
|
---|
490 | }
|
---|
491 | else
|
---|
492 | {
|
---|
493 | return 0;
|
---|
494 | }
|
---|
495 |
|
---|
496 | return 0;
|
---|
497 | }
|
---|
498 |
|
---|
499 | // c = alpha*a*conj(a') + beta*c for op = 'N'or'n'
|
---|
500 | // c = alpha*conj(a')*a + beta*c for op = 'C'or'c'
|
---|
501 | int EIGEN_BLAS_FUNC(herk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc)
|
---|
502 | {
|
---|
503 | typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, const Scalar&);
|
---|
504 | static functype func[8];
|
---|
505 |
|
---|
506 | static bool init = false;
|
---|
507 | if(!init)
|
---|
508 | {
|
---|
509 | for(int k=0; k<8; ++k)
|
---|
510 | func[k] = 0;
|
---|
511 |
|
---|
512 | func[NOTR | (UP << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,Conj, ColMajor,Upper>::run);
|
---|
513 | func[ADJ | (UP << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,false,ColMajor,Upper>::run);
|
---|
514 |
|
---|
515 | func[NOTR | (LO << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,Conj, ColMajor,Lower>::run);
|
---|
516 | func[ADJ | (LO << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,false,ColMajor,Lower>::run);
|
---|
517 |
|
---|
518 | init = true;
|
---|
519 | }
|
---|
520 |
|
---|
521 | Scalar* a = reinterpret_cast<Scalar*>(pa);
|
---|
522 | Scalar* c = reinterpret_cast<Scalar*>(pc);
|
---|
523 | RealScalar alpha = *palpha;
|
---|
524 | RealScalar beta = *pbeta;
|
---|
525 |
|
---|
526 | // std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n";
|
---|
527 |
|
---|
528 | int info = 0;
|
---|
529 | if(UPLO(*uplo)==INVALID) info = 1;
|
---|
530 | else if((OP(*op)==INVALID) || (OP(*op)==TR)) info = 2;
|
---|
531 | else if(*n<0) info = 3;
|
---|
532 | else if(*k<0) info = 4;
|
---|
533 | else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 7;
|
---|
534 | else if(*ldc<std::max(1,*n)) info = 10;
|
---|
535 | if(info)
|
---|
536 | return xerbla_(SCALAR_SUFFIX_UP"HERK ",&info,6);
|
---|
537 |
|
---|
538 | int code = OP(*op) | (UPLO(*uplo) << 2);
|
---|
539 |
|
---|
540 | if(beta!=RealScalar(1))
|
---|
541 | {
|
---|
542 | if(UPLO(*uplo)==UP)
|
---|
543 | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
|
---|
544 | else matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta;
|
---|
545 | else
|
---|
546 | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
|
---|
547 | else matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta;
|
---|
548 |
|
---|
549 | if(beta!=Scalar(0))
|
---|
550 | {
|
---|
551 | matrix(c, *n, *n, *ldc).diagonal().real() *= beta;
|
---|
552 | matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
|
---|
553 | }
|
---|
554 | }
|
---|
555 |
|
---|
556 | if(*k>0 && alpha!=RealScalar(0))
|
---|
557 | {
|
---|
558 | func[code](*n, *k, a, *lda, a, *lda, c, *ldc, alpha);
|
---|
559 | matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
|
---|
560 | }
|
---|
561 | return 0;
|
---|
562 | }
|
---|
563 |
|
---|
564 | // c = alpha*a*conj(b') + conj(alpha)*b*conj(a') + beta*c, for op = 'N'or'n'
|
---|
565 | // c = alpha*conj(a')*b + conj(alpha)*conj(b')*a + beta*c, for op = 'C'or'c'
|
---|
566 | int EIGEN_BLAS_FUNC(her2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc)
|
---|
567 | {
|
---|
568 | Scalar* a = reinterpret_cast<Scalar*>(pa);
|
---|
569 | Scalar* b = reinterpret_cast<Scalar*>(pb);
|
---|
570 | Scalar* c = reinterpret_cast<Scalar*>(pc);
|
---|
571 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
---|
572 | RealScalar beta = *pbeta;
|
---|
573 |
|
---|
574 | int info = 0;
|
---|
575 | if(UPLO(*uplo)==INVALID) info = 1;
|
---|
576 | else if((OP(*op)==INVALID) || (OP(*op)==TR)) info = 2;
|
---|
577 | else if(*n<0) info = 3;
|
---|
578 | else if(*k<0) info = 4;
|
---|
579 | else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 7;
|
---|
580 | else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 9;
|
---|
581 | else if(*ldc<std::max(1,*n)) info = 12;
|
---|
582 | if(info)
|
---|
583 | return xerbla_(SCALAR_SUFFIX_UP"HER2K",&info,6);
|
---|
584 |
|
---|
585 | if(beta!=RealScalar(1))
|
---|
586 | {
|
---|
587 | if(UPLO(*uplo)==UP)
|
---|
588 | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
|
---|
589 | else matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta;
|
---|
590 | else
|
---|
591 | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
|
---|
592 | else matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta;
|
---|
593 |
|
---|
594 | if(beta!=Scalar(0))
|
---|
595 | {
|
---|
596 | matrix(c, *n, *n, *ldc).diagonal().real() *= beta;
|
---|
597 | matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
|
---|
598 | }
|
---|
599 | }
|
---|
600 | else if(*k>0 && alpha!=Scalar(0))
|
---|
601 | matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
|
---|
602 |
|
---|
603 | if(*k==0)
|
---|
604 | return 1;
|
---|
605 |
|
---|
606 | if(OP(*op)==NOTR)
|
---|
607 | {
|
---|
608 | if(UPLO(*uplo)==UP)
|
---|
609 | {
|
---|
610 | matrix(c, *n, *n, *ldc).triangularView<Upper>()
|
---|
611 | += alpha *matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).adjoint()
|
---|
612 | + numext::conj(alpha)*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).adjoint();
|
---|
613 | }
|
---|
614 | else if(UPLO(*uplo)==LO)
|
---|
615 | matrix(c, *n, *n, *ldc).triangularView<Lower>()
|
---|
616 | += alpha*matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).adjoint()
|
---|
617 | + numext::conj(alpha)*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).adjoint();
|
---|
618 | }
|
---|
619 | else if(OP(*op)==ADJ)
|
---|
620 | {
|
---|
621 | if(UPLO(*uplo)==UP)
|
---|
622 | matrix(c, *n, *n, *ldc).triangularView<Upper>()
|
---|
623 | += alpha*matrix(a, *k, *n, *lda).adjoint()*matrix(b, *k, *n, *ldb)
|
---|
624 | + numext::conj(alpha)*matrix(b, *k, *n, *ldb).adjoint()*matrix(a, *k, *n, *lda);
|
---|
625 | else if(UPLO(*uplo)==LO)
|
---|
626 | matrix(c, *n, *n, *ldc).triangularView<Lower>()
|
---|
627 | += alpha*matrix(a, *k, *n, *lda).adjoint()*matrix(b, *k, *n, *ldb)
|
---|
628 | + numext::conj(alpha)*matrix(b, *k, *n, *ldb).adjoint()*matrix(a, *k, *n, *lda);
|
---|
629 | }
|
---|
630 |
|
---|
631 | return 1;
|
---|
632 | }
|
---|
633 |
|
---|
634 | #endif // ISCOMPLEX
|
---|