source: pacpussensors/trunk/Vislab/lib3dv/eigen/lapack/cholesky.cpp@ 141

Last change on this file since 141 was 136, checked in by ldecherf, 8 years ago

Doc

File size: 2.2 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#include "lapack_common.h"
11#include <Eigen/Cholesky>
12
13// POTRF computes the Cholesky factorization of a real symmetric positive definite matrix A.
14EIGEN_LAPACK_FUNC(potrf,(char* uplo, int *n, RealScalar *pa, int *lda, int *info))
15{
16 *info = 0;
17 if(UPLO(*uplo)==INVALID) *info = -1;
18 else if(*n<0) *info = -2;
19 else if(*lda<std::max(1,*n)) *info = -4;
20 if(*info!=0)
21 {
22 int e = -*info;
23 return xerbla_(SCALAR_SUFFIX_UP"POTRF", &e, 6);
24 }
25
26 Scalar* a = reinterpret_cast<Scalar*>(pa);
27 MatrixType A(a,*n,*n,*lda);
28 int ret;
29 if(UPLO(*uplo)==UP) ret = int(internal::llt_inplace<Scalar, Upper>::blocked(A));
30 else ret = int(internal::llt_inplace<Scalar, Lower>::blocked(A));
31
32 if(ret>=0)
33 *info = ret+1;
34
35 return 0;
36}
37
38// POTRS solves a system of linear equations A*X = B with a symmetric
39// positive definite matrix A using the Cholesky factorization
40// A = U**T*U or A = L*L**T computed by DPOTRF.
41EIGEN_LAPACK_FUNC(potrs,(char* uplo, int *n, int *nrhs, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, int *info))
42{
43 *info = 0;
44 if(UPLO(*uplo)==INVALID) *info = -1;
45 else if(*n<0) *info = -2;
46 else if(*nrhs<0) *info = -3;
47 else if(*lda<std::max(1,*n)) *info = -5;
48 else if(*ldb<std::max(1,*n)) *info = -7;
49 if(*info!=0)
50 {
51 int e = -*info;
52 return xerbla_(SCALAR_SUFFIX_UP"POTRS", &e, 6);
53 }
54
55 Scalar* a = reinterpret_cast<Scalar*>(pa);
56 Scalar* b = reinterpret_cast<Scalar*>(pb);
57 MatrixType A(a,*n,*n,*lda);
58 MatrixType B(b,*n,*nrhs,*ldb);
59
60 if(UPLO(*uplo)==UP)
61 {
62 A.triangularView<Upper>().adjoint().solveInPlace(B);
63 A.triangularView<Upper>().solveInPlace(B);
64 }
65 else
66 {
67 A.triangularView<Lower>().solveInPlace(B);
68 A.triangularView<Lower>().adjoint().solveInPlace(B);
69 }
70
71 return 0;
72}
Note: See TracBrowser for help on using the repository browser.