source: pacpussensors/trunk/Vislab/lib3dv/eigen/lapack/zlarft.f@ 139

Last change on this file since 139 was 136, checked in by ldecherf, 8 years ago

Doc

File size: 10.2 KB
Line 
1*> \brief \b ZLARFT
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZLARFT + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarft.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarft.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarft.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
22*
23* .. Scalar Arguments ..
24* CHARACTER DIRECT, STOREV
25* INTEGER K, LDT, LDV, N
26* ..
27* .. Array Arguments ..
28* COMPLEX*16 T( LDT, * ), TAU( * ), V( LDV, * )
29* ..
30*
31*
32*> \par Purpose:
33* =============
34*>
35*> \verbatim
36*>
37*> ZLARFT forms the triangular factor T of a complex block reflector H
38*> of order n, which is defined as a product of k elementary reflectors.
39*>
40*> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
41*>
42*> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
43*>
44*> If STOREV = 'C', the vector which defines the elementary reflector
45*> H(i) is stored in the i-th column of the array V, and
46*>
47*> H = I - V * T * V**H
48*>
49*> If STOREV = 'R', the vector which defines the elementary reflector
50*> H(i) is stored in the i-th row of the array V, and
51*>
52*> H = I - V**H * T * V
53*> \endverbatim
54*
55* Arguments:
56* ==========
57*
58*> \param[in] DIRECT
59*> \verbatim
60*> DIRECT is CHARACTER*1
61*> Specifies the order in which the elementary reflectors are
62*> multiplied to form the block reflector:
63*> = 'F': H = H(1) H(2) . . . H(k) (Forward)
64*> = 'B': H = H(k) . . . H(2) H(1) (Backward)
65*> \endverbatim
66*>
67*> \param[in] STOREV
68*> \verbatim
69*> STOREV is CHARACTER*1
70*> Specifies how the vectors which define the elementary
71*> reflectors are stored (see also Further Details):
72*> = 'C': columnwise
73*> = 'R': rowwise
74*> \endverbatim
75*>
76*> \param[in] N
77*> \verbatim
78*> N is INTEGER
79*> The order of the block reflector H. N >= 0.
80*> \endverbatim
81*>
82*> \param[in] K
83*> \verbatim
84*> K is INTEGER
85*> The order of the triangular factor T (= the number of
86*> elementary reflectors). K >= 1.
87*> \endverbatim
88*>
89*> \param[in] V
90*> \verbatim
91*> V is COMPLEX*16 array, dimension
92*> (LDV,K) if STOREV = 'C'
93*> (LDV,N) if STOREV = 'R'
94*> The matrix V. See further details.
95*> \endverbatim
96*>
97*> \param[in] LDV
98*> \verbatim
99*> LDV is INTEGER
100*> The leading dimension of the array V.
101*> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
102*> \endverbatim
103*>
104*> \param[in] TAU
105*> \verbatim
106*> TAU is COMPLEX*16 array, dimension (K)
107*> TAU(i) must contain the scalar factor of the elementary
108*> reflector H(i).
109*> \endverbatim
110*>
111*> \param[out] T
112*> \verbatim
113*> T is COMPLEX*16 array, dimension (LDT,K)
114*> The k by k triangular factor T of the block reflector.
115*> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
116*> lower triangular. The rest of the array is not used.
117*> \endverbatim
118*>
119*> \param[in] LDT
120*> \verbatim
121*> LDT is INTEGER
122*> The leading dimension of the array T. LDT >= K.
123*> \endverbatim
124*
125* Authors:
126* ========
127*
128*> \author Univ. of Tennessee
129*> \author Univ. of California Berkeley
130*> \author Univ. of Colorado Denver
131*> \author NAG Ltd.
132*
133*> \date April 2012
134*
135*> \ingroup complex16OTHERauxiliary
136*
137*> \par Further Details:
138* =====================
139*>
140*> \verbatim
141*>
142*> The shape of the matrix V and the storage of the vectors which define
143*> the H(i) is best illustrated by the following example with n = 5 and
144*> k = 3. The elements equal to 1 are not stored.
145*>
146*> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
147*>
148*> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
149*> ( v1 1 ) ( 1 v2 v2 v2 )
150*> ( v1 v2 1 ) ( 1 v3 v3 )
151*> ( v1 v2 v3 )
152*> ( v1 v2 v3 )
153*>
154*> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
155*>
156*> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
157*> ( v1 v2 v3 ) ( v2 v2 v2 1 )
158*> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
159*> ( 1 v3 )
160*> ( 1 )
161*> \endverbatim
162*>
163* =====================================================================
164 SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
165*
166* -- LAPACK auxiliary routine (version 3.4.1) --
167* -- LAPACK is a software package provided by Univ. of Tennessee, --
168* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
169* April 2012
170*
171* .. Scalar Arguments ..
172 CHARACTER DIRECT, STOREV
173 INTEGER K, LDT, LDV, N
174* ..
175* .. Array Arguments ..
176 COMPLEX*16 T( LDT, * ), TAU( * ), V( LDV, * )
177* ..
178*
179* =====================================================================
180*
181* .. Parameters ..
182 COMPLEX*16 ONE, ZERO
183 PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
184 $ ZERO = ( 0.0D+0, 0.0D+0 ) )
185* ..
186* .. Local Scalars ..
187 INTEGER I, J, PREVLASTV, LASTV
188* ..
189* .. External Subroutines ..
190 EXTERNAL ZGEMV, ZLACGV, ZTRMV
191* ..
192* .. External Functions ..
193 LOGICAL LSAME
194 EXTERNAL LSAME
195* ..
196* .. Executable Statements ..
197*
198* Quick return if possible
199*
200 IF( N.EQ.0 )
201 $ RETURN
202*
203 IF( LSAME( DIRECT, 'F' ) ) THEN
204 PREVLASTV = N
205 DO I = 1, K
206 PREVLASTV = MAX( PREVLASTV, I )
207 IF( TAU( I ).EQ.ZERO ) THEN
208*
209* H(i) = I
210*
211 DO J = 1, I
212 T( J, I ) = ZERO
213 END DO
214 ELSE
215*
216* general case
217*
218 IF( LSAME( STOREV, 'C' ) ) THEN
219* Skip any trailing zeros.
220 DO LASTV = N, I+1, -1
221 IF( V( LASTV, I ).NE.ZERO ) EXIT
222 END DO
223 DO J = 1, I-1
224 T( J, I ) = -TAU( I ) * CONJG( V( I , J ) )
225 END DO
226 J = MIN( LASTV, PREVLASTV )
227*
228* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**H * V(i:j,i)
229*
230 CALL ZGEMV( 'Conjugate transpose', J-I, I-1,
231 $ -TAU( I ), V( I+1, 1 ), LDV,
232 $ V( I+1, I ), 1, ONE, T( 1, I ), 1 )
233 ELSE
234* Skip any trailing zeros.
235 DO LASTV = N, I+1, -1
236 IF( V( I, LASTV ).NE.ZERO ) EXIT
237 END DO
238 DO J = 1, I-1
239 T( J, I ) = -TAU( I ) * V( J , I )
240 END DO
241 J = MIN( LASTV, PREVLASTV )
242*
243* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**H
244*
245 CALL ZGEMM( 'N', 'C', I-1, 1, J-I, -TAU( I ),
246 $ V( 1, I+1 ), LDV, V( I, I+1 ), LDV,
247 $ ONE, T( 1, I ), LDT )
248 END IF
249*
250* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
251*
252 CALL ZTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T,
253 $ LDT, T( 1, I ), 1 )
254 T( I, I ) = TAU( I )
255 IF( I.GT.1 ) THEN
256 PREVLASTV = MAX( PREVLASTV, LASTV )
257 ELSE
258 PREVLASTV = LASTV
259 END IF
260 END IF
261 END DO
262 ELSE
263 PREVLASTV = 1
264 DO I = K, 1, -1
265 IF( TAU( I ).EQ.ZERO ) THEN
266*
267* H(i) = I
268*
269 DO J = I, K
270 T( J, I ) = ZERO
271 END DO
272 ELSE
273*
274* general case
275*
276 IF( I.LT.K ) THEN
277 IF( LSAME( STOREV, 'C' ) ) THEN
278* Skip any leading zeros.
279 DO LASTV = 1, I-1
280 IF( V( LASTV, I ).NE.ZERO ) EXIT
281 END DO
282 DO J = I+1, K
283 T( J, I ) = -TAU( I ) * CONJG( V( N-K+I , J ) )
284 END DO
285 J = MAX( LASTV, PREVLASTV )
286*
287* T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**H * V(j:n-k+i,i)
288*
289 CALL ZGEMV( 'Conjugate transpose', N-K+I-J, K-I,
290 $ -TAU( I ), V( J, I+1 ), LDV, V( J, I ),
291 $ 1, ONE, T( I+1, I ), 1 )
292 ELSE
293* Skip any leading zeros.
294 DO LASTV = 1, I-1
295 IF( V( I, LASTV ).NE.ZERO ) EXIT
296 END DO
297 DO J = I+1, K
298 T( J, I ) = -TAU( I ) * V( J, N-K+I )
299 END DO
300 J = MAX( LASTV, PREVLASTV )
301*
302* T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**H
303*
304 CALL ZGEMM( 'N', 'C', K-I, 1, N-K+I-J, -TAU( I ),
305 $ V( I+1, J ), LDV, V( I, J ), LDV,
306 $ ONE, T( I+1, I ), LDT )
307 END IF
308*
309* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
310*
311 CALL ZTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
312 $ T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
313 IF( I.GT.1 ) THEN
314 PREVLASTV = MIN( PREVLASTV, LASTV )
315 ELSE
316 PREVLASTV = LASTV
317 END IF
318 END IF
319 T( I, I ) = TAU( I )
320 END IF
321 END DO
322 END IF
323 RETURN
324*
325* End of ZLARFT
326*
327 END
Note: See TracBrowser for help on using the repository browser.