source: pacpussensors/trunk/Vislab/lib3dv/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h@ 136

Last change on this file since 136 was 136, checked in by ldecherf, 7 years ago

Doc

File size: 12.0 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Mark Borgerding mark a borgerding net
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10namespace Eigen {
11
12namespace internal {
13
14 // This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft
15 // Copyright 2003-2009 Mark Borgerding
16
17template <typename _Scalar>
18struct kiss_cpx_fft
19{
20 typedef _Scalar Scalar;
21 typedef std::complex<Scalar> Complex;
22 std::vector<Complex> m_twiddles;
23 std::vector<int> m_stageRadix;
24 std::vector<int> m_stageRemainder;
25 std::vector<Complex> m_scratchBuf;
26 bool m_inverse;
27
28 inline
29 void make_twiddles(int nfft,bool inverse)
30 {
31 using std::acos;
32 m_inverse = inverse;
33 m_twiddles.resize(nfft);
34 Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
35 for (int i=0;i<nfft;++i)
36 m_twiddles[i] = exp( Complex(0,i*phinc) );
37 }
38
39 void factorize(int nfft)
40 {
41 //start factoring out 4's, then 2's, then 3,5,7,9,...
42 int n= nfft;
43 int p=4;
44 do {
45 while (n % p) {
46 switch (p) {
47 case 4: p = 2; break;
48 case 2: p = 3; break;
49 default: p += 2; break;
50 }
51 if (p*p>n)
52 p=n;// impossible to have a factor > sqrt(n)
53 }
54 n /= p;
55 m_stageRadix.push_back(p);
56 m_stageRemainder.push_back(n);
57 if ( p > 5 )
58 m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic
59 }while(n>1);
60 }
61
62 template <typename _Src>
63 inline
64 void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
65 {
66 int p = m_stageRadix[stage];
67 int m = m_stageRemainder[stage];
68 Complex * Fout_beg = xout;
69 Complex * Fout_end = xout + p*m;
70
71 if (m>1) {
72 do{
73 // recursive call:
74 // DFT of size m*p performed by doing
75 // p instances of smaller DFTs of size m,
76 // each one takes a decimated version of the input
77 work(stage+1, xout , xin, fstride*p,in_stride);
78 xin += fstride*in_stride;
79 }while( (xout += m) != Fout_end );
80 }else{
81 do{
82 *xout = *xin;
83 xin += fstride*in_stride;
84 }while(++xout != Fout_end );
85 }
86 xout=Fout_beg;
87
88 // recombine the p smaller DFTs
89 switch (p) {
90 case 2: bfly2(xout,fstride,m); break;
91 case 3: bfly3(xout,fstride,m); break;
92 case 4: bfly4(xout,fstride,m); break;
93 case 5: bfly5(xout,fstride,m); break;
94 default: bfly_generic(xout,fstride,m,p); break;
95 }
96 }
97
98 inline
99 void bfly2( Complex * Fout, const size_t fstride, int m)
100 {
101 for (int k=0;k<m;++k) {
102 Complex t = Fout[m+k] * m_twiddles[k*fstride];
103 Fout[m+k] = Fout[k] - t;
104 Fout[k] += t;
105 }
106 }
107
108 inline
109 void bfly4( Complex * Fout, const size_t fstride, const size_t m)
110 {
111 Complex scratch[6];
112 int negative_if_inverse = m_inverse * -2 +1;
113 for (size_t k=0;k<m;++k) {
114 scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
115 scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
116 scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
117 scratch[5] = Fout[k] - scratch[1];
118
119 Fout[k] += scratch[1];
120 scratch[3] = scratch[0] + scratch[2];
121 scratch[4] = scratch[0] - scratch[2];
122 scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
123
124 Fout[k+2*m] = Fout[k] - scratch[3];
125 Fout[k] += scratch[3];
126 Fout[k+m] = scratch[5] + scratch[4];
127 Fout[k+3*m] = scratch[5] - scratch[4];
128 }
129 }
130
131 inline
132 void bfly3( Complex * Fout, const size_t fstride, const size_t m)
133 {
134 size_t k=m;
135 const size_t m2 = 2*m;
136 Complex *tw1,*tw2;
137 Complex scratch[5];
138 Complex epi3;
139 epi3 = m_twiddles[fstride*m];
140
141 tw1=tw2=&m_twiddles[0];
142
143 do{
144 scratch[1]=Fout[m] * *tw1;
145 scratch[2]=Fout[m2] * *tw2;
146
147 scratch[3]=scratch[1]+scratch[2];
148 scratch[0]=scratch[1]-scratch[2];
149 tw1 += fstride;
150 tw2 += fstride*2;
151 Fout[m] = Complex( Fout->real() - Scalar(.5)*scratch[3].real() , Fout->imag() - Scalar(.5)*scratch[3].imag() );
152 scratch[0] *= epi3.imag();
153 *Fout += scratch[3];
154 Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
155 Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
156 ++Fout;
157 }while(--k);
158 }
159
160 inline
161 void bfly5( Complex * Fout, const size_t fstride, const size_t m)
162 {
163 Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
164 size_t u;
165 Complex scratch[13];
166 Complex * twiddles = &m_twiddles[0];
167 Complex *tw;
168 Complex ya,yb;
169 ya = twiddles[fstride*m];
170 yb = twiddles[fstride*2*m];
171
172 Fout0=Fout;
173 Fout1=Fout0+m;
174 Fout2=Fout0+2*m;
175 Fout3=Fout0+3*m;
176 Fout4=Fout0+4*m;
177
178 tw=twiddles;
179 for ( u=0; u<m; ++u ) {
180 scratch[0] = *Fout0;
181
182 scratch[1] = *Fout1 * tw[u*fstride];
183 scratch[2] = *Fout2 * tw[2*u*fstride];
184 scratch[3] = *Fout3 * tw[3*u*fstride];
185 scratch[4] = *Fout4 * tw[4*u*fstride];
186
187 scratch[7] = scratch[1] + scratch[4];
188 scratch[10] = scratch[1] - scratch[4];
189 scratch[8] = scratch[2] + scratch[3];
190 scratch[9] = scratch[2] - scratch[3];
191
192 *Fout0 += scratch[7];
193 *Fout0 += scratch[8];
194
195 scratch[5] = scratch[0] + Complex(
196 (scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
197 (scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
198 );
199
200 scratch[6] = Complex(
201 (scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
202 -(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
203 );
204
205 *Fout1 = scratch[5] - scratch[6];
206 *Fout4 = scratch[5] + scratch[6];
207
208 scratch[11] = scratch[0] +
209 Complex(
210 (scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
211 (scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
212 );
213
214 scratch[12] = Complex(
215 -(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
216 (scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
217 );
218
219 *Fout2=scratch[11]+scratch[12];
220 *Fout3=scratch[11]-scratch[12];
221
222 ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
223 }
224 }
225
226 /* perform the butterfly for one stage of a mixed radix FFT */
227 inline
228 void bfly_generic(
229 Complex * Fout,
230 const size_t fstride,
231 int m,
232 int p
233 )
234 {
235 int u,k,q1,q;
236 Complex * twiddles = &m_twiddles[0];
237 Complex t;
238 int Norig = static_cast<int>(m_twiddles.size());
239 Complex * scratchbuf = &m_scratchBuf[0];
240
241 for ( u=0; u<m; ++u ) {
242 k=u;
243 for ( q1=0 ; q1<p ; ++q1 ) {
244 scratchbuf[q1] = Fout[ k ];
245 k += m;
246 }
247
248 k=u;
249 for ( q1=0 ; q1<p ; ++q1 ) {
250 int twidx=0;
251 Fout[ k ] = scratchbuf[0];
252 for (q=1;q<p;++q ) {
253 twidx += static_cast<int>(fstride) * k;
254 if (twidx>=Norig) twidx-=Norig;
255 t=scratchbuf[q] * twiddles[twidx];
256 Fout[ k ] += t;
257 }
258 k += m;
259 }
260 }
261 }
262};
263
264template <typename _Scalar>
265struct kissfft_impl
266{
267 typedef _Scalar Scalar;
268 typedef std::complex<Scalar> Complex;
269
270 void clear()
271 {
272 m_plans.clear();
273 m_realTwiddles.clear();
274 }
275
276 inline
277 void fwd( Complex * dst,const Complex *src,int nfft)
278 {
279 get_plan(nfft,false).work(0, dst, src, 1,1);
280 }
281
282 inline
283 void fwd2( Complex * dst,const Complex *src,int n0,int n1)
284 {
285 EIGEN_UNUSED_VARIABLE(dst);
286 EIGEN_UNUSED_VARIABLE(src);
287 EIGEN_UNUSED_VARIABLE(n0);
288 EIGEN_UNUSED_VARIABLE(n1);
289 }
290
291 inline
292 void inv2( Complex * dst,const Complex *src,int n0,int n1)
293 {
294 EIGEN_UNUSED_VARIABLE(dst);
295 EIGEN_UNUSED_VARIABLE(src);
296 EIGEN_UNUSED_VARIABLE(n0);
297 EIGEN_UNUSED_VARIABLE(n1);
298 }
299
300 // real-to-complex forward FFT
301 // perform two FFTs of src even and src odd
302 // then twiddle to recombine them into the half-spectrum format
303 // then fill in the conjugate symmetric half
304 inline
305 void fwd( Complex * dst,const Scalar * src,int nfft)
306 {
307 if ( nfft&3 ) {
308 // use generic mode for odd
309 m_tmpBuf1.resize(nfft);
310 get_plan(nfft,false).work(0, &m_tmpBuf1[0], src, 1,1);
311 std::copy(m_tmpBuf1.begin(),m_tmpBuf1.begin()+(nfft>>1)+1,dst );
312 }else{
313 int ncfft = nfft>>1;
314 int ncfft2 = nfft>>2;
315 Complex * rtw = real_twiddles(ncfft2);
316
317 // use optimized mode for even real
318 fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
319 Complex dc = dst[0].real() + dst[0].imag();
320 Complex nyquist = dst[0].real() - dst[0].imag();
321 int k;
322 for ( k=1;k <= ncfft2 ; ++k ) {
323 Complex fpk = dst[k];
324 Complex fpnk = conj(dst[ncfft-k]);
325 Complex f1k = fpk + fpnk;
326 Complex f2k = fpk - fpnk;
327 Complex tw= f2k * rtw[k-1];
328 dst[k] = (f1k + tw) * Scalar(.5);
329 dst[ncfft-k] = conj(f1k -tw)*Scalar(.5);
330 }
331 dst[0] = dc;
332 dst[ncfft] = nyquist;
333 }
334 }
335
336 // inverse complex-to-complex
337 inline
338 void inv(Complex * dst,const Complex *src,int nfft)
339 {
340 get_plan(nfft,true).work(0, dst, src, 1,1);
341 }
342
343 // half-complex to scalar
344 inline
345 void inv( Scalar * dst,const Complex * src,int nfft)
346 {
347 if (nfft&3) {
348 m_tmpBuf1.resize(nfft);
349 m_tmpBuf2.resize(nfft);
350 std::copy(src,src+(nfft>>1)+1,m_tmpBuf1.begin() );
351 for (int k=1;k<(nfft>>1)+1;++k)
352 m_tmpBuf1[nfft-k] = conj(m_tmpBuf1[k]);
353 inv(&m_tmpBuf2[0],&m_tmpBuf1[0],nfft);
354 for (int k=0;k<nfft;++k)
355 dst[k] = m_tmpBuf2[k].real();
356 }else{
357 // optimized version for multiple of 4
358 int ncfft = nfft>>1;
359 int ncfft2 = nfft>>2;
360 Complex * rtw = real_twiddles(ncfft2);
361 m_tmpBuf1.resize(ncfft);
362 m_tmpBuf1[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
363 for (int k = 1; k <= ncfft / 2; ++k) {
364 Complex fk = src[k];
365 Complex fnkc = conj(src[ncfft-k]);
366 Complex fek = fk + fnkc;
367 Complex tmp = fk - fnkc;
368 Complex fok = tmp * conj(rtw[k-1]);
369 m_tmpBuf1[k] = fek + fok;
370 m_tmpBuf1[ncfft-k] = conj(fek - fok);
371 }
372 get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf1[0], 1,1);
373 }
374 }
375
376 protected:
377 typedef kiss_cpx_fft<Scalar> PlanData;
378 typedef std::map<int,PlanData> PlanMap;
379
380 PlanMap m_plans;
381 std::map<int, std::vector<Complex> > m_realTwiddles;
382 std::vector<Complex> m_tmpBuf1;
383 std::vector<Complex> m_tmpBuf2;
384
385 inline
386 int PlanKey(int nfft, bool isinverse) const { return (nfft<<1) | int(isinverse); }
387
388 inline
389 PlanData & get_plan(int nfft, bool inverse)
390 {
391 // TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles
392 PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
393 if ( pd.m_twiddles.size() == 0 ) {
394 pd.make_twiddles(nfft,inverse);
395 pd.factorize(nfft);
396 }
397 return pd;
398 }
399
400 inline
401 Complex * real_twiddles(int ncfft2)
402 {
403 using std::acos;
404 std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
405 if ( (int)twidref.size() != ncfft2 ) {
406 twidref.resize(ncfft2);
407 int ncfft= ncfft2<<1;
408 Scalar pi = acos( Scalar(-1) );
409 for (int k=1;k<=ncfft2;++k)
410 twidref[k-1] = exp( Complex(0,-pi * (Scalar(k) / ncfft + Scalar(.5)) ) );
411 }
412 return &twidref[0];
413 }
414};
415
416} // end namespace internal
417
418} // end namespace Eigen
419
420/* vim: set filetype=cpp et sw=2 ts=2 ai: */
Note: See TracBrowser for help on using the repository browser.