source: pacpussensors/trunk/Vislab/lib3dv/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h@ 136

Last change on this file since 136 was 136, checked in by ldecherf, 7 years ago

Doc

File size: 18.2 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_DGMRES_H
11#define EIGEN_DGMRES_H
12
13#include <Eigen/Eigenvalues>
14
15namespace Eigen {
16
17template< typename _MatrixType,
18 typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
19class DGMRES;
20
21namespace internal {
22
23template< typename _MatrixType, typename _Preconditioner>
24struct traits<DGMRES<_MatrixType,_Preconditioner> >
25{
26 typedef _MatrixType MatrixType;
27 typedef _Preconditioner Preconditioner;
28};
29
30/** \brief Computes a permutation vector to have a sorted sequence
31 * \param vec The vector to reorder.
32 * \param perm gives the sorted sequence on output. Must be initialized with 0..n-1
33 * \param ncut Put the ncut smallest elements at the end of the vector
34 * WARNING This is an expensive sort, so should be used only
35 * for small size vectors
36 * TODO Use modified QuickSplit or std::nth_element to get the smallest values
37 */
38template <typename VectorType, typename IndexType>
39void sortWithPermutation (VectorType& vec, IndexType& perm, typename IndexType::Scalar& ncut)
40{
41 eigen_assert(vec.size() == perm.size());
42 typedef typename IndexType::Scalar Index;
43 typedef typename VectorType::Scalar Scalar;
44 bool flag;
45 for (Index k = 0; k < ncut; k++)
46 {
47 flag = false;
48 for (Index j = 0; j < vec.size()-1; j++)
49 {
50 if ( vec(perm(j)) < vec(perm(j+1)) )
51 {
52 std::swap(perm(j),perm(j+1));
53 flag = true;
54 }
55 if (!flag) break; // The vector is in sorted order
56 }
57 }
58}
59
60}
61/**
62 * \ingroup IterativeLInearSolvers_Module
63 * \brief A Restarted GMRES with deflation.
64 * This class implements a modification of the GMRES solver for
65 * sparse linear systems. The basis is built with modified
66 * Gram-Schmidt. At each restart, a few approximated eigenvectors
67 * corresponding to the smallest eigenvalues are used to build a
68 * preconditioner for the next cycle. This preconditioner
69 * for deflation can be combined with any other preconditioner,
70 * the IncompleteLUT for instance. The preconditioner is applied
71 * at right of the matrix and the combination is multiplicative.
72 *
73 * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
74 * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
75 * Typical usage :
76 * \code
77 * SparseMatrix<double> A;
78 * VectorXd x, b;
79 * //Fill A and b ...
80 * DGMRES<SparseMatrix<double> > solver;
81 * solver.set_restart(30); // Set restarting value
82 * solver.setEigenv(1); // Set the number of eigenvalues to deflate
83 * solver.compute(A);
84 * x = solver.solve(b);
85 * \endcode
86 *
87 * References :
88 * [1] D. NUENTSA WAKAM and F. PACULL, Memory Efficient Hybrid
89 * Algebraic Solvers for Linear Systems Arising from Compressible
90 * Flows, Computers and Fluids, In Press,
91 * http://dx.doi.org/10.1016/j.compfluid.2012.03.023
92 * [2] K. Burrage and J. Erhel, On the performance of various
93 * adaptive preconditioned GMRES strategies, 5(1998), 101-121.
94 * [3] J. Erhel, K. Burrage and B. Pohl, Restarted GMRES
95 * preconditioned by deflation,J. Computational and Applied
96 * Mathematics, 69(1996), 303-318.
97
98 *
99 */
100template< typename _MatrixType, typename _Preconditioner>
101class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
102{
103 typedef IterativeSolverBase<DGMRES> Base;
104 using Base::mp_matrix;
105 using Base::m_error;
106 using Base::m_iterations;
107 using Base::m_info;
108 using Base::m_isInitialized;
109 using Base::m_tolerance;
110 public:
111 typedef _MatrixType MatrixType;
112 typedef typename MatrixType::Scalar Scalar;
113 typedef typename MatrixType::Index Index;
114 typedef typename MatrixType::RealScalar RealScalar;
115 typedef _Preconditioner Preconditioner;
116 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
117 typedef Matrix<RealScalar,Dynamic,Dynamic> DenseRealMatrix;
118 typedef Matrix<Scalar,Dynamic,1> DenseVector;
119 typedef Matrix<RealScalar,Dynamic,1> DenseRealVector;
120 typedef Matrix<std::complex<RealScalar>, Dynamic, 1> ComplexVector;
121
122
123 /** Default constructor. */
124 DGMRES() : Base(),m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}
125
126 /** Initialize the solver with matrix \a A for further \c Ax=b solving.
127 *
128 * This constructor is a shortcut for the default constructor followed
129 * by a call to compute().
130 *
131 * \warning this class stores a reference to the matrix A as well as some
132 * precomputed values that depend on it. Therefore, if \a A is changed
133 * this class becomes invalid. Call compute() to update it with the new
134 * matrix A, or modify a copy of A.
135 */
136 template<typename MatrixDerived>
137 explicit DGMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}
138
139 ~DGMRES() {}
140
141 /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
142 * \a x0 as an initial solution.
143 *
144 * \sa compute()
145 */
146 template<typename Rhs,typename Guess>
147 inline const internal::solve_retval_with_guess<DGMRES, Rhs, Guess>
148 solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
149 {
150 eigen_assert(m_isInitialized && "DGMRES is not initialized.");
151 eigen_assert(Base::rows()==b.rows()
152 && "DGMRES::solve(): invalid number of rows of the right hand side matrix b");
153 return internal::solve_retval_with_guess
154 <DGMRES, Rhs, Guess>(*this, b.derived(), x0);
155 }
156
157 /** \internal */
158 template<typename Rhs,typename Dest>
159 void _solveWithGuess(const Rhs& b, Dest& x) const
160 {
161 bool failed = false;
162 for(int j=0; j<b.cols(); ++j)
163 {
164 m_iterations = Base::maxIterations();
165 m_error = Base::m_tolerance;
166
167 typename Dest::ColXpr xj(x,j);
168 dgmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner);
169 }
170 m_info = failed ? NumericalIssue
171 : m_error <= Base::m_tolerance ? Success
172 : NoConvergence;
173 m_isInitialized = true;
174 }
175
176 /** \internal */
177 template<typename Rhs,typename Dest>
178 void _solve(const Rhs& b, Dest& x) const
179 {
180 x = b;
181 _solveWithGuess(b,x);
182 }
183 /**
184 * Get the restart value
185 */
186 int restart() { return m_restart; }
187
188 /**
189 * Set the restart value (default is 30)
190 */
191 void set_restart(const int restart) { m_restart=restart; }
192
193 /**
194 * Set the number of eigenvalues to deflate at each restart
195 */
196 void setEigenv(const int neig)
197 {
198 m_neig = neig;
199 if (neig+1 > m_maxNeig) m_maxNeig = neig+1; // To allow for complex conjugates
200 }
201
202 /**
203 * Get the size of the deflation subspace size
204 */
205 int deflSize() {return m_r; }
206
207 /**
208 * Set the maximum size of the deflation subspace
209 */
210 void setMaxEigenv(const int maxNeig) { m_maxNeig = maxNeig; }
211
212 protected:
213 // DGMRES algorithm
214 template<typename Rhs, typename Dest>
215 void dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x, const Preconditioner& precond) const;
216 // Perform one cycle of GMRES
217 template<typename Dest>
218 int dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, int& nbIts) const;
219 // Compute data to use for deflation
220 int dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, Index& neig) const;
221 // Apply deflation to a vector
222 template<typename RhsType, typename DestType>
223 int dgmresApplyDeflation(const RhsType& In, DestType& Out) const;
224 ComplexVector schurValues(const ComplexSchur<DenseMatrix>& schurofH) const;
225 ComplexVector schurValues(const RealSchur<DenseMatrix>& schurofH) const;
226 // Init data for deflation
227 void dgmresInitDeflation(Index& rows) const;
228 mutable DenseMatrix m_V; // Krylov basis vectors
229 mutable DenseMatrix m_H; // Hessenberg matrix
230 mutable DenseMatrix m_Hes; // Initial hessenberg matrix wihout Givens rotations applied
231 mutable Index m_restart; // Maximum size of the Krylov subspace
232 mutable DenseMatrix m_U; // Vectors that form the basis of the invariant subspace
233 mutable DenseMatrix m_MU; // matrix operator applied to m_U (for next cycles)
234 mutable DenseMatrix m_T; /* T=U^T*M^{-1}*A*U */
235 mutable PartialPivLU<DenseMatrix> m_luT; // LU factorization of m_T
236 mutable int m_neig; //Number of eigenvalues to extract at each restart
237 mutable int m_r; // Current number of deflated eigenvalues, size of m_U
238 mutable int m_maxNeig; // Maximum number of eigenvalues to deflate
239 mutable RealScalar m_lambdaN; //Modulus of the largest eigenvalue of A
240 mutable bool m_isDeflAllocated;
241 mutable bool m_isDeflInitialized;
242
243 //Adaptive strategy
244 mutable RealScalar m_smv; // Smaller multiple of the remaining number of steps allowed
245 mutable bool m_force; // Force the use of deflation at each restart
246
247};
248/**
249 * \brief Perform several cycles of restarted GMRES with modified Gram Schmidt,
250 *
251 * A right preconditioner is used combined with deflation.
252 *
253 */
254template< typename _MatrixType, typename _Preconditioner>
255template<typename Rhs, typename Dest>
256void DGMRES<_MatrixType, _Preconditioner>::dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x,
257 const Preconditioner& precond) const
258{
259 //Initialization
260 int n = mat.rows();
261 DenseVector r0(n);
262 int nbIts = 0;
263 m_H.resize(m_restart+1, m_restart);
264 m_Hes.resize(m_restart, m_restart);
265 m_V.resize(n,m_restart+1);
266 //Initial residual vector and intial norm
267 x = precond.solve(x);
268 r0 = rhs - mat * x;
269 RealScalar beta = r0.norm();
270 RealScalar normRhs = rhs.norm();
271 m_error = beta/normRhs;
272 if(m_error < m_tolerance)
273 m_info = Success;
274 else
275 m_info = NoConvergence;
276
277 // Iterative process
278 while (nbIts < m_iterations && m_info == NoConvergence)
279 {
280 dgmresCycle(mat, precond, x, r0, beta, normRhs, nbIts);
281
282 // Compute the new residual vector for the restart
283 if (nbIts < m_iterations && m_info == NoConvergence)
284 r0 = rhs - mat * x;
285 }
286}
287
288/**
289 * \brief Perform one restart cycle of DGMRES
290 * \param mat The coefficient matrix
291 * \param precond The preconditioner
292 * \param x the new approximated solution
293 * \param r0 The initial residual vector
294 * \param beta The norm of the residual computed so far
295 * \param normRhs The norm of the right hand side vector
296 * \param nbIts The number of iterations
297 */
298template< typename _MatrixType, typename _Preconditioner>
299template<typename Dest>
300int DGMRES<_MatrixType, _Preconditioner>::dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, int& nbIts) const
301{
302 //Initialization
303 DenseVector g(m_restart+1); // Right hand side of the least square problem
304 g.setZero();
305 g(0) = Scalar(beta);
306 m_V.col(0) = r0/beta;
307 m_info = NoConvergence;
308 std::vector<JacobiRotation<Scalar> >gr(m_restart); // Givens rotations
309 int it = 0; // Number of inner iterations
310 int n = mat.rows();
311 DenseVector tv1(n), tv2(n); //Temporary vectors
312 while (m_info == NoConvergence && it < m_restart && nbIts < m_iterations)
313 {
314 // Apply preconditioner(s) at right
315 if (m_isDeflInitialized )
316 {
317 dgmresApplyDeflation(m_V.col(it), tv1); // Deflation
318 tv2 = precond.solve(tv1);
319 }
320 else
321 {
322 tv2 = precond.solve(m_V.col(it)); // User's selected preconditioner
323 }
324 tv1 = mat * tv2;
325
326 // Orthogonalize it with the previous basis in the basis using modified Gram-Schmidt
327 Scalar coef;
328 for (int i = 0; i <= it; ++i)
329 {
330 coef = tv1.dot(m_V.col(i));
331 tv1 = tv1 - coef * m_V.col(i);
332 m_H(i,it) = coef;
333 m_Hes(i,it) = coef;
334 }
335 // Normalize the vector
336 coef = tv1.norm();
337 m_V.col(it+1) = tv1/coef;
338 m_H(it+1, it) = coef;
339// m_Hes(it+1,it) = coef;
340
341 // FIXME Check for happy breakdown
342
343 // Update Hessenberg matrix with Givens rotations
344 for (int i = 1; i <= it; ++i)
345 {
346 m_H.col(it).applyOnTheLeft(i-1,i,gr[i-1].adjoint());
347 }
348 // Compute the new plane rotation
349 gr[it].makeGivens(m_H(it, it), m_H(it+1,it));
350 // Apply the new rotation
351 m_H.col(it).applyOnTheLeft(it,it+1,gr[it].adjoint());
352 g.applyOnTheLeft(it,it+1, gr[it].adjoint());
353
354 beta = std::abs(g(it+1));
355 m_error = beta/normRhs;
356 std::cerr << nbIts << " Relative Residual Norm " << m_error << std::endl;
357 it++; nbIts++;
358
359 if (m_error < m_tolerance)
360 {
361 // The method has converged
362 m_info = Success;
363 break;
364 }
365 }
366
367 // Compute the new coefficients by solving the least square problem
368// it++;
369 //FIXME Check first if the matrix is singular ... zero diagonal
370 DenseVector nrs(m_restart);
371 nrs = m_H.topLeftCorner(it,it).template triangularView<Upper>().solve(g.head(it));
372
373 // Form the new solution
374 if (m_isDeflInitialized)
375 {
376 tv1 = m_V.leftCols(it) * nrs;
377 dgmresApplyDeflation(tv1, tv2);
378 x = x + precond.solve(tv2);
379 }
380 else
381 x = x + precond.solve(m_V.leftCols(it) * nrs);
382
383 // Go for a new cycle and compute data for deflation
384 if(nbIts < m_iterations && m_info == NoConvergence && m_neig > 0 && (m_r+m_neig) < m_maxNeig)
385 dgmresComputeDeflationData(mat, precond, it, m_neig);
386 return 0;
387
388}
389
390
391template< typename _MatrixType, typename _Preconditioner>
392void DGMRES<_MatrixType, _Preconditioner>::dgmresInitDeflation(Index& rows) const
393{
394 m_U.resize(rows, m_maxNeig);
395 m_MU.resize(rows, m_maxNeig);
396 m_T.resize(m_maxNeig, m_maxNeig);
397 m_lambdaN = 0.0;
398 m_isDeflAllocated = true;
399}
400
401template< typename _MatrixType, typename _Preconditioner>
402inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const ComplexSchur<DenseMatrix>& schurofH) const
403{
404 return schurofH.matrixT().diagonal();
405}
406
407template< typename _MatrixType, typename _Preconditioner>
408inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const RealSchur<DenseMatrix>& schurofH) const
409{
410 typedef typename MatrixType::Index Index;
411 const DenseMatrix& T = schurofH.matrixT();
412 Index it = T.rows();
413 ComplexVector eig(it);
414 Index j = 0;
415 while (j < it-1)
416 {
417 if (T(j+1,j) ==Scalar(0))
418 {
419 eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0));
420 j++;
421 }
422 else
423 {
424 eig(j) = std::complex<RealScalar>(T(j,j),T(j+1,j));
425 eig(j+1) = std::complex<RealScalar>(T(j,j+1),T(j+1,j+1));
426 j++;
427 }
428 }
429 if (j < it-1) eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0));
430 return eig;
431}
432
433template< typename _MatrixType, typename _Preconditioner>
434int DGMRES<_MatrixType, _Preconditioner>::dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, Index& neig) const
435{
436 // First, find the Schur form of the Hessenberg matrix H
437 typename internal::conditional<NumTraits<Scalar>::IsComplex, ComplexSchur<DenseMatrix>, RealSchur<DenseMatrix> >::type schurofH;
438 bool computeU = true;
439 DenseMatrix matrixQ(it,it);
440 matrixQ.setIdentity();
441 schurofH.computeFromHessenberg(m_Hes.topLeftCorner(it,it), matrixQ, computeU);
442
443 ComplexVector eig(it);
444 Matrix<Index,Dynamic,1>perm(it);
445 eig = this->schurValues(schurofH);
446
447 // Reorder the absolute values of Schur values
448 DenseRealVector modulEig(it);
449 for (int j=0; j<it; ++j) modulEig(j) = std::abs(eig(j));
450 perm.setLinSpaced(it,0,it-1);
451 internal::sortWithPermutation(modulEig, perm, neig);
452
453 if (!m_lambdaN)
454 {
455 m_lambdaN = (std::max)(modulEig.maxCoeff(), m_lambdaN);
456 }
457 //Count the real number of extracted eigenvalues (with complex conjugates)
458 int nbrEig = 0;
459 while (nbrEig < neig)
460 {
461 if(eig(perm(it-nbrEig-1)).imag() == RealScalar(0)) nbrEig++;
462 else nbrEig += 2;
463 }
464 // Extract the Schur vectors corresponding to the smallest Ritz values
465 DenseMatrix Sr(it, nbrEig);
466 Sr.setZero();
467 for (int j = 0; j < nbrEig; j++)
468 {
469 Sr.col(j) = schurofH.matrixU().col(perm(it-j-1));
470 }
471
472 // Form the Schur vectors of the initial matrix using the Krylov basis
473 DenseMatrix X;
474 X = m_V.leftCols(it) * Sr;
475 if (m_r)
476 {
477 // Orthogonalize X against m_U using modified Gram-Schmidt
478 for (int j = 0; j < nbrEig; j++)
479 for (int k =0; k < m_r; k++)
480 X.col(j) = X.col(j) - (m_U.col(k).dot(X.col(j)))*m_U.col(k);
481 }
482
483 // Compute m_MX = A * M^-1 * X
484 Index m = m_V.rows();
485 if (!m_isDeflAllocated)
486 dgmresInitDeflation(m);
487 DenseMatrix MX(m, nbrEig);
488 DenseVector tv1(m);
489 for (int j = 0; j < nbrEig; j++)
490 {
491 tv1 = mat * X.col(j);
492 MX.col(j) = precond.solve(tv1);
493 }
494
495 //Update m_T = [U'MU U'MX; X'MU X'MX]
496 m_T.block(m_r, m_r, nbrEig, nbrEig) = X.transpose() * MX;
497 if(m_r)
498 {
499 m_T.block(0, m_r, m_r, nbrEig) = m_U.leftCols(m_r).transpose() * MX;
500 m_T.block(m_r, 0, nbrEig, m_r) = X.transpose() * m_MU.leftCols(m_r);
501 }
502
503 // Save X into m_U and m_MX in m_MU
504 for (int j = 0; j < nbrEig; j++) m_U.col(m_r+j) = X.col(j);
505 for (int j = 0; j < nbrEig; j++) m_MU.col(m_r+j) = MX.col(j);
506 // Increase the size of the invariant subspace
507 m_r += nbrEig;
508
509 // Factorize m_T into m_luT
510 m_luT.compute(m_T.topLeftCorner(m_r, m_r));
511
512 //FIXME CHeck if the factorization was correctly done (nonsingular matrix)
513 m_isDeflInitialized = true;
514 return 0;
515}
516template<typename _MatrixType, typename _Preconditioner>
517template<typename RhsType, typename DestType>
518int DGMRES<_MatrixType, _Preconditioner>::dgmresApplyDeflation(const RhsType &x, DestType &y) const
519{
520 DenseVector x1 = m_U.leftCols(m_r).transpose() * x;
521 y = x + m_U.leftCols(m_r) * ( m_lambdaN * m_luT.solve(x1) - x1);
522 return 0;
523}
524
525namespace internal {
526
527 template<typename _MatrixType, typename _Preconditioner, typename Rhs>
528struct solve_retval<DGMRES<_MatrixType, _Preconditioner>, Rhs>
529 : solve_retval_base<DGMRES<_MatrixType, _Preconditioner>, Rhs>
530{
531 typedef DGMRES<_MatrixType, _Preconditioner> Dec;
532 EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
533
534 template<typename Dest> void evalTo(Dest& dst) const
535 {
536 dec()._solve(rhs(),dst);
537 }
538};
539} // end namespace internal
540
541} // end namespace Eigen
542#endif
Note: See TracBrowser for help on using the repository browser.