- Timestamp:
- Jan 10, 2013, 11:24:23 AM (12 years ago)
- Location:
- trunk/include/Pacpus
- Files:
-
- 5 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/include/Pacpus/PacpusTools/geodesie.h
r69 r70 37 37 struct Matrice 38 38 { 39 /// Copy ctor 39 40 Matrice(const Matrice & A); 41 /// Ctor 40 42 Matrice(); 43 /// @todo Documentation 41 44 void Apply(double v0, double v1, double v2, double & Mv0, double & Mv1, double & Mv2); 42 45 43 double c0_l0;double c1_l0;double c2_l0; 44 double c0_l1;double c1_l1;double c2_l1; 45 double c0_l2;double c1_l2;double c2_l2; 46 /// @todo Documentation 47 double c0_l0; 48 /// @todo Documentation 49 double c1_l0; 50 /// @todo Documentation 51 double c2_l0; 52 53 /// @todo Documentation 54 double c0_l1; 55 /// @todo Documentation 56 double c1_l1; 57 /// @todo Documentation 58 double c2_l1; 59 60 /// @todo Documentation 61 double c0_l2; 62 /// @todo Documentation 63 double c1_l2; 64 /// @todo Documentation 65 double c2_l2; 46 66 }; 47 67 -
trunk/include/Pacpus/PacpusTools/math/ublas.hpp
r66 r70 27 27 28 28 namespace math { 29 30 namespace ublas { 31 32 /*! 33 *\fn typedef boost::numeric::ublas::matrix<double> Matrix 34 * \brief Definition of a matrix using double precision 35 */ 36 typedef boost::numeric::ublas::matrix<double> Matrix; 37 /*! 38 *\fn typedef boost::numeric::ublas::vector<double> Vector 39 * \brief Definition of a vector using double precision 40 */ 41 typedef boost::numeric::ublas::vector<double> Vector; 42 /*! 43 *\fn typedef boost::numeric::ublas::zero_vector<double> ZeroVector; 44 * \brief Definition of empty vector using double precision 45 */ 46 typedef boost::numeric::ublas::zero_vector<double> ZeroVector; 47 /*! 48 *\fn typedef boost::numeric::ublas::zero_matrix<double> ZeroMatrix; 49 * \brief Definition of empty matrix using double precision 50 */ 51 typedef boost::numeric::ublas::zero_matrix<double> ZeroMatrix; 52 53 /*! 54 * \fn inline boost::numeric::ublas::matrix<T> operator *(const boost::numeric::ublas::matrix<T> & m1, const boost::numeric::ublas::matrix<T> & m2) 55 * \brief multiplication of two matrices 56 * \param m1 : ublas matrix 57 * \param m2 : ublas matrix 58 * \return ublas matrix 59 */ 60 template<class T> inline boost::numeric::ublas::matrix<T> operator *(const boost::numeric::ublas::matrix<T> & m1, const boost::numeric::ublas::matrix<T> & m2) 61 { 29 namespace ublas { 30 31 /// Definition of a matrix using double precision 32 typedef boost::numeric::ublas::matrix<double> Matrix; 33 /// Definition of a vector using double precision 34 typedef boost::numeric::ublas::vector<double> Vector; 35 /// Definition of empty vector using double precision 36 typedef boost::numeric::ublas::zero_vector<double> ZeroVector; 37 /// Definition of empty matrix using double precision 38 typedef boost::numeric::ublas::zero_matrix<double> ZeroMatrix; 39 40 /// Multiplication of two matrices. 41 /// 42 /// @tparam T @todo Documentation 43 /// @param m1 ublas matrix 44 /// @param m2 ublas matrix 45 /// @returns ublas matrix 46 template<class T> 47 inline boost::numeric::ublas::matrix<T> operator *(const boost::numeric::ublas::matrix<T> & m1, const boost::numeric::ublas::matrix<T> & m2) 48 { 62 49 return prod(m1,m2); 63 64 65 /*! 66 * \fn inline boost::numeric::ublas::vector<T> operator *(const boost::numeric::ublas::matrix<T> & m, const boost::numeric::ublas::vector<T> & v) 67 * \brief product of a vector by a matrix 68 * \param m :ublas matrix69 * \param v :ublas vector70 * \returnublas vector71 */ 72 template<class T>inline boost::numeric::ublas::vector<T> operator *(const boost::numeric::ublas::matrix<T> & m, const boost::numeric::ublas::vector<T> & v)73 50 } 51 52 /// product of a vector by a matrix 53 /// 54 /// @tparam T @todo Documentation 55 /// @param m ublas matrix 56 /// @param v ublas vector 57 /// @returns ublas vector 58 template<class T> 59 inline boost::numeric::ublas::vector<T> operator *(const boost::numeric::ublas::matrix<T> & m, const boost::numeric::ublas::vector<T> & v) 60 { 74 61 return prod(m,v); 75 } 76 77 /*! 78 * \fn inline boost::numeric::ublas::vector<T> operator +(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2) 79 * \brief addition of two vectors 80 * \param v1 : ublas vector 81 * \param v2 : ublas vector 82 * \return ublas vector 83 */ 84 template<class T> inline boost::numeric::ublas::vector<T> operator +(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2) 85 { 86 boost::numeric::ublas::vector<T> tmp = v1; 87 return tmp+=v2; 88 } 89 90 /*! 91 * \fn inline boost::numeric::ublas::vector<T> operator -(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2) 92 * \brief subtraction of two vectors 93 * \param v1 : ublas vector 94 * \param v2 : ublas vector 95 * \return ublas vector 96 */ 97 template<class T> inline boost::numeric::ublas::vector<T> operator -(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2) 98 { 99 boost::numeric::ublas::vector<T> tmp = v1; 100 return tmp-=v2; 101 } 102 103 /*! 104 * \fn inline boost::numeric::ublas::matrix<T>Trans(boost::numeric::ublas::matrix<T> &m) 105 * \brief transpose a matrix 106 * \param m : ublas matrix 107 * \return ublas matrix 108 */ 109 template<class T> inline boost::numeric::ublas::matrix<T>Trans(boost::numeric::ublas::matrix<T> &m) 110 { 111 return trans(m); 112 } 113 114 /*! 115 * \fn inline boost::numeric::ublas::matrix<T> vector2matrix(const boost::numeric::ublas::vector<T> &v) 116 * \brief convert a vector to a matrix 117 * \param v : ublas vector 118 * \return ublas matrix 119 */ 120 template <class T> inline boost::numeric::ublas::matrix<T> vector2matrix(const boost::numeric::ublas::vector<T> &v) 121 { 62 } 63 64 /// addition of two vectors 65 /// 66 /// @tparam T @todo Documentation 67 /// @param v1 ublas vector 68 /// @param v2 ublas vector 69 /// @returns ublas vector 70 template<class T> 71 inline boost::numeric::ublas::vector<T> operator +(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2) 72 { 73 boost::numeric::ublas::vector<T> tmp = v1; 74 return tmp+=v2; 75 } 76 77 /// subtraction of two vectors 78 /// 79 /// @tparam T @todo Documentation 80 /// @param v1 ublas vector 81 /// @param v2 ublas vector 82 /// @returns ublas vector 83 template<class T> 84 inline boost::numeric::ublas::vector<T> operator -(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2) 85 { 86 boost::numeric::ublas::vector<T> tmp = v1; 87 return tmp-=v2; 88 } 89 90 /// Transposes a matrix 91 /// 92 /// @tparam T @todo Documentation 93 /// @param m ublas matrix 94 /// @returns ublas matrix 95 template<class T> 96 inline boost::numeric::ublas::matrix<T> Trans(boost::numeric::ublas::matrix<T> &m) 97 { 98 return trans(m); 99 } 100 101 /// Converts a vector to a matrix. 102 /// 103 /// @param v ublas vector 104 /// @returns ublas matrix 105 template <class T> 106 inline boost::numeric::ublas::matrix<T> vector2matrix(const boost::numeric::ublas::vector<T> &v) 107 { 122 108 boost::numeric::ublas::matrix<T> tmp(v.size(),1); 123 for(size_t i=0;i<v.size();i++) tmp(i,0)=v[i]; 109 for(size_t i=0;i<v.size();i++) { 110 tmp(i,0)=v[i]; 111 } 124 112 return tmp; 125 } 126 127 128 /*! 129 * \fn inline double Norm(const boost::numeric::ublas::vector<T> & v) 130 * \brief compute the norm of a vector 131 * \param v : ublas vector 132 * \return norm value 133 */ 134 template <class T> inline double Norm(const boost::numeric::ublas::vector<T> & v){ 113 } 114 115 /// compute the norm of a vector 116 /// 117 /// @param v ublas vector 118 /// @returns norm value 119 template <class T> 120 inline double Norm(const boost::numeric::ublas::vector<T> & v){ 135 121 double norm =0; 136 for(typename boost::numeric::ublas::vector<T>::const_iterator I=v.begin();I!=v.end();I++) norm+=(*I)*(*I); 122 for(typename boost::numeric::ublas::vector<T>::const_iterator I=v.begin(); I != v.end(); ++I) { 123 norm+=(*I)*(*I); 124 } 137 125 return std::sqrt(norm); 138 } 139 140 141 /*! 142 * \fn inline boost::numeric::ublas::vector<T> Mult(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2) 143 * \brief term by term multiplication of two vectors 144 * \param v1 : ublas vector 145 * \param v2 : ublas vector 146 * \return ublas vector 147 */ 148 template <class T> inline boost::numeric::ublas::vector<T> Mult(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2){ 149 if(v1.size()!=v2.size()) throw math_error("Dot(v1,v2) : vectors must have the same size"); 150 boost::numeric::ublas::vector<T> v(v1.size()); 151 for(size_t i=0;i<v1.size();i++) v[i]=v1[i]*v2[i]; 152 return v; 153 } 154 155 /*! 156 * \fn inline double Dot(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2) 157 * \brief dot product 158 * \param v1 : ublas vector 159 * \param v2 : ublas vector 160 * \return dot value 161 */ 162 template <class T> inline double Dot(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2){ 163 if(v1.size()!=v2.size()) throw math_error("Dot(v1,v2) : vectors must have the same size"); 164 double dot=0; 165 for(size_t i=0;i<v1.size();i++) dot+=v1[i]*v2[i]; 166 return dot; 167 } 168 169 170 /*! 171 * \fn inline Matrix Inv(const Matrix &m) 172 * \brief matrix inversion using LU decomposition 173 * \param m : ublas matrix 174 * \return ubls matrix 175 */ 176 inline Matrix InvLU(const Matrix &m) throw(math_error){ 177 using namespace boost::numeric::ublas; 178 typedef permutation_matrix<std::size_t> pmatrix; 179 180 if(m.size1() != m.size2()) throw math_error("Inv(m): matrix must be square"); 181 182 // create a working copy of the input 183 Matrix A(m); 184 // create a permutation matrix for the LU-factorization 185 pmatrix pm(A.size1()); 186 // perform LU-factorization 187 int res = lu_factorize(A,pm); 188 if( res != 0 ) throw math_error("Inv(m) : singular matrix"); 189 // create identity matrix of "inverse" 190 Matrix inverse = identity_matrix<double>(A.size1()); 191 // backsubstitute to get the inverse 192 lu_substitute(A, pm, inverse); 193 194 return inverse; 195 } 196 197 198 126 } 127 128 /// term by term multiplication of two vectors 129 /// 130 /// @param v1 : ublas vector 131 /// @param v2 : ublas vector 132 /// @returns ublas vector 133 template <class T> 134 inline boost::numeric::ublas::vector<T> Mult(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2) 135 { 136 if(v1.size()!=v2.size()) { 137 throw math_error("Dot(v1,v2) : vectors must have the same size"); 138 } 139 boost::numeric::ublas::vector<T> v(v1.size()); 140 for(size_t i=0;i<v1.size();i++) { 141 v[i]=v1[i]*v2[i]; 142 } 143 return v; 144 } 145 146 /// dot product 147 /// 148 /// @param v1 ublas vector 149 /// @param v2 ublas vector 150 /// @returns dot product value 151 template <class T> 152 inline double Dot(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2) 153 { 154 if(v1.size()!=v2.size()) { 155 throw math_error("Dot(v1,v2) : vectors must have the same size"); 156 } 157 double dot=0; 158 for(size_t i=0;i<v1.size();i++) { 159 dot+=v1[i]*v2[i]; 160 } 161 return dot; 162 } 163 164 /// matrix inversion using LU decomposition 165 /// @param m ublas matrix 166 /// @returns ublas matrix 167 inline Matrix InvLU(const Matrix &m) 168 throw(math_error) 169 { 170 using namespace boost::numeric::ublas; 171 typedef permutation_matrix<std::size_t> pmatrix; 172 173 if(m.size1() != m.size2()) throw math_error("Inv(m): matrix must be square"); 174 175 // create a working copy of the input 176 Matrix A(m); 177 // create a permutation matrix for the LU-factorization 178 pmatrix pm(A.size1()); 179 // perform LU-factorization 180 int res = lu_factorize(A,pm); 181 if( res != 0 ) throw math_error("Inv(m) : singular matrix"); 182 // create identity matrix of "inverse" 183 Matrix inverse = identity_matrix<double>(A.size1()); 184 // backsubstitute to get the inverse 185 lu_substitute(A, pm, inverse); 186 187 return inverse; 188 } 199 189 200 190 //////////////////////////////////////////////////////////////////////////////// … … 202 192 /////////////////////////////////////////////////////////////////////////////// 203 193 204 template<class T> 205 bool InvertMatrix (const boost::numeric::ublas::matrix<T>& input, boost::numeric::ublas::matrix<T>& inverse) { 206 using namespace boost::numeric::ublas; 207 typedef permutation_matrix<std::size_t> pmatrix; 208 // create a working copy of the input 209 matrix<T> A(input); 210 // create a permutation matrix for the LU-factorization 211 pmatrix pm(A.size1()); 212 213 // perform LU-factorization 214 int res = lu_factorize(A,pm); 215 if( res != 0 ) return false; 216 217 // create identity matrix of "inverse" 218 inverse.assign(boost::numeric::ublas::identity_matrix<T>(A.size1())); 219 220 // backsubstitute to get the inverse 221 lu_substitute(A, pm, inverse); 222 223 return true; 224 } 225 226 template<class T> 227 void TransposeMultiply (const boost::numeric::ublas::vector<T>& vector, 228 boost::numeric::ublas::matrix<T>& result, 229 size_t size) 230 { 231 result.resize (size,size); 232 result.clear (); 233 for(unsigned int row=0; row< vector.size(); ++row) 234 { 235 for(unsigned int col=0; col < vector.size(); ++col) 236 result(row,col) = vector(col) * vector(row); 237 238 } 239 } 240 241 template<class T> 242 void HouseholderCornerSubstraction (boost::numeric::ublas::matrix<T>& LeftLarge, 243 const boost::numeric::ublas::matrix<T>& RightSmall) 244 { 245 using namespace boost::numeric::ublas; 246 using namespace std; 247 if( 248 !( 249 (LeftLarge.size1() >= RightSmall.size1()) 250 && (LeftLarge.size2() >= RightSmall.size2()) 251 ) 252 ) 253 { 254 cerr << "invalid matrix dimensions" << endl; 255 return; 256 } 257 258 size_t row_offset = LeftLarge.size2() - RightSmall.size2(); 259 size_t col_offset = LeftLarge.size1() - RightSmall.size1(); 260 261 for(unsigned int row = 0; row < RightSmall.size2(); ++row ) 262 for(unsigned int col = 0; col < RightSmall.size1(); ++col ) 263 LeftLarge(col_offset+col,row_offset+row) -= RightSmall(col,row); 264 } 265 266 template<class T> 267 void QR (const boost::numeric::ublas::matrix<T>& M, 268 boost::numeric::ublas::matrix<T>& Q, 269 boost::numeric::ublas::matrix<T>& R) 270 { 271 using namespace boost::numeric::ublas; 272 using namespace std; 273 274 if( 275 !( 276 (M.size1() == M.size2()) 277 ) 278 ) 279 { 280 cerr << "invalid matrix dimensions" << endl; 281 return; 282 } 283 size_t size = M.size1(); 284 285 // init Matrices 286 matrix<T> H, HTemp; 287 HTemp = identity_matrix<T>(size); 288 Q = identity_matrix<T>(size); 289 R = M; 290 291 // find Householder reflection matrices 292 for(unsigned int col = 0; col < size-1; ++col) 293 { 294 // create X vector 295 boost::numeric::ublas::vector<T> RRowView = boost::numeric::ublas::column(R,col); 296 vector_range< boost::numeric::ublas::vector<T> > X2 (RRowView, range (col, size)); 297 boost::numeric::ublas::vector<T> X = X2; 298 299 // X -> U~ 300 if(X(0) >= 0) 301 X(0) += norm_2(X); 302 else 303 X(0) += -1*norm_2(X); 304 305 HTemp.resize(X.size(),X.size(),true); 306 307 TransposeMultiply(X, HTemp, X.size()); 308 309 // HTemp = the 2UUt part of H 310 HTemp *= ( 2 / inner_prod(X,X) ); 311 312 // H = I - 2UUt 313 H = identity_matrix<T>(size); 314 HouseholderCornerSubstraction(H,HTemp); 315 316 // add H to Q and R 317 Q = prod(Q,H); 318 R = prod(H,R); 319 } 320 } 194 /// @todo Documentation 195 /// @tparam T @todo Documentation 196 template<class T> 197 bool InvertMatrix (const boost::numeric::ublas::matrix<T>& input, boost::numeric::ublas::matrix<T>& inverse) 198 { 199 using namespace boost::numeric::ublas; 200 typedef permutation_matrix<std::size_t> pmatrix; 201 // create a working copy of the input 202 matrix<T> A(input); 203 // create a permutation matrix for the LU-factorization 204 pmatrix pm(A.size1()); 205 206 // perform LU-factorization 207 int res = lu_factorize(A,pm); 208 if( res != 0 ) return false; 209 210 // create identity matrix of "inverse" 211 inverse.assign(boost::numeric::ublas::identity_matrix<T>(A.size1())); 212 213 // backsubstitute to get the inverse 214 lu_substitute(A, pm, inverse); 215 216 return true; 217 } 218 219 /// @todo Documentation 220 /// @tparam T @todo Documentation 221 template<class T> 222 void TransposeMultiply(const boost::numeric::ublas::vector<T>& vector, 223 boost::numeric::ublas::matrix<T>& result, 224 size_t size) 225 { 226 result.resize (size,size); 227 result.clear (); 228 for(unsigned int row=0; row< vector.size(); ++row) 229 { 230 for(unsigned int col=0; col < vector.size(); ++col) 231 result(row,col) = vector(col) * vector(row); 232 233 } 234 } 235 236 /// @todo Documentation 237 /// @tparam T @todo Documentation 238 template<class T> 239 void HouseholderCornerSubstraction (boost::numeric::ublas::matrix<T>& LeftLarge, 240 const boost::numeric::ublas::matrix<T>& RightSmall) 241 { 242 using namespace boost::numeric::ublas; 243 using namespace std; 244 if( 245 !( 246 (LeftLarge.size1() >= RightSmall.size1()) 247 && (LeftLarge.size2() >= RightSmall.size2()) 248 ) 249 ) 250 { 251 cerr << "invalid matrix dimensions" << endl; 252 return; 253 } 254 255 size_t row_offset = LeftLarge.size2() - RightSmall.size2(); 256 size_t col_offset = LeftLarge.size1() - RightSmall.size1(); 257 258 for(unsigned int row = 0; row < RightSmall.size2(); ++row ) 259 for(unsigned int col = 0; col < RightSmall.size1(); ++col ) 260 LeftLarge(col_offset+col,row_offset+row) -= RightSmall(col,row); 261 } 262 263 /// @todo Documentation 264 /// @tparam T @todo Documentation 265 template<class T> 266 void QR (const boost::numeric::ublas::matrix<T>& M, 267 boost::numeric::ublas::matrix<T>& Q, 268 boost::numeric::ublas::matrix<T>& R) 269 { 270 using namespace boost::numeric::ublas; 271 using namespace std; 272 273 if( 274 !( 275 (M.size1() == M.size2()) 276 ) 277 ) 278 { 279 cerr << "invalid matrix dimensions" << endl; 280 return; 281 } 282 size_t size = M.size1(); 283 284 // init Matrices 285 matrix<T> H, HTemp; 286 HTemp = identity_matrix<T>(size); 287 Q = identity_matrix<T>(size); 288 R = M; 289 290 // find Householder reflection matrices 291 for(unsigned int col = 0; col < size-1; ++col) 292 { 293 // create X vector 294 boost::numeric::ublas::vector<T> RRowView = boost::numeric::ublas::column(R,col); 295 vector_range< boost::numeric::ublas::vector<T> > X2 (RRowView, range (col, size)); 296 boost::numeric::ublas::vector<T> X = X2; 297 298 // X -> U~ 299 if(X(0) >= 0) 300 X(0) += norm_2(X); 301 else 302 X(0) += -1*norm_2(X); 303 304 HTemp.resize(X.size(),X.size(),true); 305 306 TransposeMultiply(X, HTemp, X.size()); 307 308 // HTemp = the 2UUt part of H 309 HTemp *= ( 2 / inner_prod(X,X) ); 310 311 // H = I - 2UUt 312 H = identity_matrix<T>(size); 313 HouseholderCornerSubstraction(H,HTemp); 314 315 // add H to Q and R 316 Q = prod(Q,H); 317 R = prod(H,R); 318 } 319 } 321 320 //////////////////////////////////////////////////////////////////////////////////////////:: 322 321 323 324 325 326 327 328 /*! 329 * \fn inline Matrix InvQR(const Matrix &m) 330 * \brief matrix inversion using QR decomposition 331 * \param m : ublas matrix 332 * \return ubls matrix 333 */ 334 inline Matrix InvQR(const Matrix &m) throw(math_error){ 335 using namespace boost::numeric::ublas; 336 337 if(m.size1() != m.size2()) throw math_error("Inv(m): matrix must be square"); 338 Matrix Q(m), R(m), Rinv(m); 339 QR (m,Q,R); 340 for( int i = 0 ; i < R.size1() ; i++ ) 341 for( int j = 0 ; j < R.size2() ; j++ ) 342 if( R(i,j) < 1e-10 ) 343 R(i,j) = 0; 344 InvertMatrix(R,Rinv); 345 return Rinv*Trans(Q); 346 } 347 348 349 /*! 350 * \fn inline double DetLU(const Matrix & m) 351 * \brief compute matrix determinant using LU decomposition 352 * \param m : ublas matrix 353 * \return ublas matrix 354 */ 355 inline double DetLU(const Matrix & m) throw(math_error){ 356 using namespace boost::numeric::ublas; 357 typedef permutation_matrix<std::size_t> pmatrix; 358 359 360 if(m.size1() != m.size2()) throw math_error("Determinant(m): matrix must be square"); 361 362 // create a working copy of the input 363 Matrix A(m); 364 // create a permutation matrix for the LU-factorization 365 pmatrix pm(m.size1()); 366 // perform LU-factorization 367 int res = lu_factorize(A, pm); 368 if( res != 0 ) throw math_error("Determinant(m) : singular matrix"); 369 //compute determinant 370 double det = 1.0; 371 for (std::size_t i=0; i < pm.size(); ++i) { 372 if (pm(i) != i) 322 /// Matrix inversion using QR decomposition 323 /// @param m ublas matrix 324 /// @returns ublas matrix 325 inline Matrix InvQR(const Matrix &m) 326 throw(math_error) 327 { 328 using namespace boost::numeric::ublas; 329 330 if(m.size1() != m.size2()) throw math_error("Inv(m): matrix must be square"); 331 Matrix Q(m), R(m), Rinv(m); 332 QR (m,Q,R); 333 for( int i = 0 ; i < R.size1() ; i++ ) 334 for( int j = 0 ; j < R.size2() ; j++ ) 335 if( R(i,j) < 1e-10 ) 336 R(i,j) = 0; 337 InvertMatrix(R,Rinv); 338 return Rinv*Trans(Q); 339 } 340 341 342 /// compute matrix determinant using LU decomposition 343 /// @param m ublas matrix 344 /// @returns ublas matrix 345 inline double DetLU(const Matrix & m) 346 throw(math_error) 347 { 348 using namespace boost::numeric::ublas; 349 typedef permutation_matrix<std::size_t> pmatrix; 350 351 352 if(m.size1() != m.size2()) throw math_error("Determinant(m): matrix must be square"); 353 354 // create a working copy of the input 355 Matrix A(m); 356 // create a permutation matrix for the LU-factorization 357 pmatrix pm(m.size1()); 358 // perform LU-factorization 359 int res = lu_factorize(A, pm); 360 if( res != 0 ) throw math_error("Determinant(m) : singular matrix"); 361 //compute determinant 362 double det = 1.0; 363 for (std::size_t i=0; i < pm.size(); ++i) { 364 if (pm(i) != i) 373 365 det *= -1.0; 374 det *= A(i,i); 366 det *= A(i,i); 367 } 368 return det; 369 } 370 371 372 /// output stream function 373 inline std::ostream& operator << (std::ostream& ostrm, const Matrix & m) 374 { 375 for (size_t i=0; i < m.size1(); i++) 376 { 377 ostrm << '['<<'\t'; 378 for (size_t j=0; j < m.size2(); j++) 379 { 380 double x = m(i,j); 381 ostrm << x << '\t'; 375 382 } 376 return det; 377 } 378 379 380 // output stream function 381 inline std::ostream& operator << (std::ostream& ostrm, const Matrix & m) 382 { 383 for (size_t i=0; i < m.size1(); i++) 384 { 385 ostrm << '['<<'\t'; 386 for (size_t j=0; j < m.size2(); j++) 387 { 388 double x = m(i,j); 389 ostrm << x << '\t'; 390 } 391 ostrm << ']'<< std::endl; 392 } 393 return ostrm; 394 } 395 396 // output stream function 397 inline std::ostream& operator << (std::ostream& ostrm, const Vector & v) 398 { 383 ostrm << ']'<< std::endl; 384 } 385 return ostrm; 386 } 387 388 /// output stream function 389 inline std::ostream& operator << (std::ostream& ostrm, const Vector & v) 390 { 399 391 for (size_t i=0; i < v.size(); i++) 400 401 ostrm << '['<<'\t';402 403 404 ostrm << ']'<< std::endl;405 406 407 392 { 393 ostrm << '['<<'\t'; 394 double x = v(i); 395 ostrm << x << '\t'; 396 ostrm << ']'<< std::endl; 397 } 398 return ostrm; 399 } 408 400 409 401 } // namespace ublas -
trunk/include/Pacpus/PacpusTools/matrice.h
r69 r70 57 57 } 58 58 59 /// @todo Documentation 59 60 matrice &operator+=(const matrice &m); //m+=m1 61 /// @todo Documentation 60 62 matrice &operator-=(const matrice &m); //m-=m1 61 63 64 /// @todo Documentation 62 65 matrice operator+(const matrice &m1) const; //m=m1+m2 66 /// @todo Documentation 63 67 matrice operator-(const matrice &m1) const; //m=m1-m2 68 /// @todo Documentation 64 69 matrice operator*(const matrice &m1) const; //m=m1*m2 65 70 71 /// @todo Documentation 66 72 matrice &operator+=(double x); //m+=x 73 /// @todo Documentation 67 74 matrice &operator-=(double x); //m-=x 68 75 76 /// @todo Documentation 69 77 matrice operator+(double x)const; //m+x 78 /// @todo Documentation 70 79 matrice operator-(double x)const; //m-x 80 /// @todo Documentation 71 81 matrice operator*(double x)const; //m*x 82 /// @todo Documentation 72 83 matrice operator/(double x)const; //m/x 73 84 85 /// @todo Documentation 74 86 friend matrice operator+(double x,matrice m1) {return m1+x ;} // x+m ; 87 /// @todo Documentation 75 88 friend matrice operator-(double x,matrice m1) {return m1-x ;} // x-m ; 89 /// @todo Documentation 76 90 friend matrice operator*(double x,matrice m1) {return m1*x ;} // x*m ; 77 91 78 matrice T(); //transposition 79 matrice I(); //inversion 92 /// Matrix transpose. 93 matrice T(); 94 /// Matrix inverse. 95 matrice I(); 80 96 97 /// @todo Documentation 81 98 double &operator()(unsigned short int i, unsigned short int j); // ecriture m(i,j)=x 99 /// @todo Documentation 82 100 double operator()(unsigned short int i, unsigned short int j) const; //lecture x=m(i,j) 101 /// @todo Documentation 83 102 double &operator()(unsigned short int i); // ecriture m(i)=x 103 /// @todo Documentation 84 104 double operator()(unsigned short int i) const; //lecture x=m(i) 85 105 106 /// @todo Documentation 86 107 void print(const char *nom); 87 108 }; -
trunk/include/Pacpus/kernel/pacpus.h
r69 r70 42 42 /// and marks it as deprecated. 43 43 44 /// @def PACPUS_DEPRECATED (func, msg)44 /// @def PACPUS_DEPRECATED_MSG(func, msg) 45 45 /// Develops to the function or method declaration @b func 46 46 /// and marks it as deprecated with a given comment @b msg. -
trunk/include/Pacpus/kernel/road_time.h
r66 r70 28 28 #include <Pacpus/kernel/cstdint.h> 29 29 30 // Export macro for ROAD_TIME DLL for Windows only30 /// Export macro for ROAD_TIME DLL for Windows only 31 31 #ifdef WIN32 32 32 # ifdef ROAD_TIME_EXPORTS … … 39 39 #endif 40 40 41 /// Timestamp type 41 42 typedef uint64_t road_time_t; 43 /// Timerange type 42 44 typedef int32_t road_timerange_t; 43 45 46 /// Timestamp difference type 44 47 typedef int64_t road_time_diff_t; 48 /// Timerange difference type 45 49 typedef int32_t road_timerange_diff_t; 46 50
Note:
See TracChangeset
for help on using the changeset viewer.