source: flair-src/trunk/lib/FlairSimulator/src/X4.cpp @ 10

Last change on this file since 10 was 10, checked in by Sanahuja Guillaume, 6 years ago

lic

File size: 10.4 KB
RevLine 
[10]1// %flair:license{
2// This file is part of the Flair framework distributed under the
3// CECILL-C License, Version 1.0.
4// %flair:license}
[8]5//  created:    2012/08/21
6//  filename:   X4.cpp
7//
8//  author:     Osamah Saif, Guillaume Sanahuja
9//              Copyright Heudiasyc UMR UTC/CNRS 7253
10//
11//  version:    $Id: $
12//
13//  purpose:    classe definissant un x4
14//
15/*********************************************************************/
16
17#include "X4.h"
18#include "Simulator.h"
19#include <SimuBldc.h>
20#include <TabWidget.h>
21#include <Tab.h>
22#include <DoubleSpinBox.h>
23#include <GroupBox.h>
24#include <math.h>
25#ifdef GL
26#include <ISceneManager.h>
27#include "Blade.h"
28#include "MeshSceneNode.h"
29#include "Gui.h"
30#include <Mutex.h>
31#endif
32
33#define K_MOT 0.4f //blade animation
34#define G (float)9.81 //gravity ( N/(m/s²) )
35
36#ifdef GL
37using namespace irr::video;
38using namespace irr::scene;
39using namespace irr::core;
40#endif
41using namespace flair::core;
42using namespace flair::gui;
43using namespace flair::actuator;
44
45namespace flair
46{
47namespace simulator
48{
49
50X4::X4(const Simulator* parent,std::string name, int dev_id): Model(parent,name)
51{
52    Tab *setup_tab=new Tab(GetTabWidget(),"model");
53        m=new DoubleSpinBox(setup_tab->NewRow(),"mass (kg):",0,20,0.1);
54        arm_length=new DoubleSpinBox(setup_tab->LastRowLastCol(),"arm length (m):",0,2,0.1);
55        //l_cg=new DoubleSpinBox(setup_tab,"position G (m):",0,2,-0.5,0.5,0.02);//position du centre de gravité/centre de poussé
56        k_mot=new DoubleSpinBox(setup_tab->NewRow(),"k_mot:",0,1,0.001,3);// vitesse rotation² (unité arbitraire) -> force (N)
57        c_mot=new DoubleSpinBox(setup_tab->LastRowLastCol(),"c_mot:",0,1,0.001,3);// vitesse rotation moteur -> couple (N.m/unité arbitraire)
58        f_air_vert=new DoubleSpinBox(setup_tab->NewRow(),"f_air_vert:",0,10,1);//frottements air depl. vertical, aussi utilisé pour les rotations ( N/(m/s) ) (du aux helices en rotation)
59        f_air_lat=new DoubleSpinBox(setup_tab->LastRowLastCol(),"f_air_lat:",0,10,1);//frottements air deplacements lateraux ( N/(m/s) )
60        j_roll=new DoubleSpinBox(setup_tab->NewRow(),"j_roll:",0,1,0.001,5); //moment d'inertie d'un axe (N.m.s²/rad)
61        j_pitch=new DoubleSpinBox(setup_tab->LastRowLastCol(),"j_pitch:",0,1,0.001,5); //moment d'inertie d'un axe (N.m.s²/rad)
62        j_yaw=new DoubleSpinBox(setup_tab->LastRowLastCol(),"j_yaw:",0,1,0.001,5); //moment d'inertie d'un axe (N.m.s²/rad)
63
64    motors=new SimuBldc(this,name,4,dev_id);
65}
66
67X4::~X4()
68{
69    //les objets irrlicht seront automatiquement detruits (moteurs, helices, pales) par parenté
70}
71
72
73#ifdef GL
74
75void X4::Draw(void)
76{
77    //create unite (1m=100cm) UAV; scale will be adapted according to arm_length parameter
78    //note that the frame used is irrlicht one:
79    //left handed, North East Up
80    const IGeometryCreator *geo;
81    geo=getGui()->getSceneManager()->getGeometryCreator();
82
83    //cylinders are aligned with y axis
84    red_arm=geo->createCylinderMesh(2.5,100,16,SColor(0, 255, 0, 0));
85    black_arm=geo->createCylinderMesh(2.5,100,16,SColor(0, 128, 128, 128));
86    motor=geo->createCylinderMesh(7.5,15,16);//,SColor(0, 128, 128, 128));
87    //geo->drop();
88
89    ITexture* texture=getGui()->getTexture("carbone.jpg");
90    fl_arm=new MeshSceneNode(this, red_arm, vector3df(0,0,0),vector3df(0,0,-135));
91    fr_arm=new MeshSceneNode(this, red_arm, vector3df(0,0,0),vector3df(0,0,-45));
92    rl_arm=new MeshSceneNode(this, black_arm, vector3df(0,0,0),vector3df(0,0,135),texture);
93    rr_arm=new MeshSceneNode(this, black_arm, vector3df(0,0,0),vector3df(0,0,45),texture);
94
95    texture=getGui()->getTexture("metal047.jpg");
96    fl_motor=new MeshSceneNode(this, motor, vector3df(70.71,-70.71,2.5),vector3df(90,0,0),texture);
97    fr_motor=new MeshSceneNode(this, motor ,vector3df(70.71,70.71,2.5),vector3df(90,0,0),texture);
98    rl_motor=new MeshSceneNode(this, motor ,vector3df(-70.71,-70.71,2.5),vector3df(90,0,0),texture);
99    rr_motor=new MeshSceneNode(this, motor ,vector3df(-70.71,70.71,2.5),vector3df(90,0,0),texture);
100
101    fl_blade=new Blade(this, vector3df(70.71,-70.71,17.5));
102    fr_blade=new Blade(this, vector3df(70.71,70.71,17.5),true);
103    rl_blade=new Blade(this, vector3df(-70.71,-70.71,17.5),true);
104    rr_blade=new Blade(this, vector3df(-70.71,70.71,17.5));
105
106    motor_speed_mutex=new Mutex(this);
107    for(int i=0;i<4;i++) motor_speed[i]=0;
108    ExtraDraw();
109}
110
111void X4::AnimateModel(void)
112{
113    motor_speed_mutex->GetMutex();
114    fl_blade->SetRotationSpeed(K_MOT*motor_speed[0]);
115    fr_blade->SetRotationSpeed(-K_MOT*motor_speed[1]);
116    rl_blade->SetRotationSpeed(-K_MOT*motor_speed[2]);
117    rr_blade->SetRotationSpeed(K_MOT*motor_speed[3]);
118    motor_speed_mutex->ReleaseMutex();
119
120    //adapt UAV size
121    if(arm_length->ValueChanged()==true)
122    {
123        setScale(arm_length->Value());
124    }
125}
126
127size_t X4::dbtSize(void) const
128{
129    return 6*sizeof(float)+4*sizeof(float);//6ddl+4helices
130}
131
132void X4::WritedbtBuf(char* dbtbuf)
133{/*
134    float *buf=(float*)dbtbuf;
135    vector3df vect=getPosition();
136    memcpy(buf,&vect.X,sizeof(float));
137    buf++;
138    memcpy(buf,&vect.Y,sizeof(float));
139    buf++;
140    memcpy(buf,&vect.Z,sizeof(float));
141    buf++;
142    vect=getRotation();
143    memcpy(buf,&vect.X,sizeof(float));
144    buf++;
145    memcpy(buf,&vect.Y,sizeof(float));
146    buf++;
147    memcpy(buf,&vect.Z,sizeof(float));
148    buf++;
149    memcpy(buf,&motors,sizeof(rtsimu_motors));*/
150}
151
152void X4::ReaddbtBuf(char* dbtbuf)
153{/*
154    float *buf=(float*)dbtbuf;
155    vector3df vect;
156    memcpy(&vect.X,buf,sizeof(float));
157    buf++;
158    memcpy(&vect.Y,buf,sizeof(float));
159    buf++;
160    memcpy(&vect.Z,buf,sizeof(float));
161    buf++;
162    setPosition(vect);
163    memcpy(&vect.X,buf,sizeof(float));
164    buf++;
165    memcpy(&vect.Y,buf,sizeof(float));
166    buf++;
167    memcpy(&vect.Z,buf,sizeof(float));
168    buf++;
169    ((ISceneNode*)(this))->setRotation(vect);
170    memcpy(&motors,buf,sizeof(rtsimu_motors));
171    AnimateModele();*/
172}
173#endif //GL
174
175//states are computed on fixed frame NED
176//x north
177//y east
178//z down
179void X4::CalcModel(void)
180{
181    float fl_speed,fr_speed,rl_speed,rr_speed;
182    float u_roll,u_pitch,u_yaw,u_thrust;
183#ifdef GL
184    motor_speed_mutex->GetMutex();
185#endif //GL
186    motors->GetSpeeds(motor_speed);
187#ifdef GL
188    motor_speed_mutex->ReleaseMutex();
189#endif //GL
190        fl_speed=motor_speed[0];
191        fr_speed=motor_speed[1];
192        rl_speed=motor_speed[2];
193        rr_speed=motor_speed[3];
194
195    /*
196        ** ===================================================================
197        **    u roll: roll torque
198        **
199        ** ===================================================================
200        */
201        u_roll=arm_length->Value()*k_mot->Value()*(fl_speed*fl_speed+rl_speed*rl_speed-fr_speed*fr_speed-rr_speed*rr_speed)*sqrtf(2)/2;
202
203    /// Classical Nonlinear model of a quadrotor ( This is the w_x angular speed of the quadri in the body frame). It is a discrete integrator
204        state[0].W.x=(dT()/j_roll->Value())*((j_yaw->Value()-j_pitch->Value())*state[-1].W.y*state[-1].W.z + u_roll) +state[-1].W.x;
205
206        //u_roll=arm_length->Value()*k_mot->Value()*(fl_speed*fl_speed+rl_speed*rl_speed-fr_speed*fr_speed-rr_speed*rr_speed)*sqrtf(2)/2;
207        //state[0].W.x=(dT()/j_roll->Value())*(u_roll-m->Value()*G*l_cg->Value()*sinf(state[-2].W.x)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.x)+state[-1].W.x;
208
209        /*
210        ** ===================================================================
211        **   u pitch : pitch torque
212        **
213        ** ===================================================================
214        */
215        u_pitch=arm_length->Value()*k_mot->Value()*(fl_speed*fl_speed+fr_speed*fr_speed-rl_speed*rl_speed-rr_speed*rr_speed)*sqrtf(2)/2;
216
217    /// Classical Nonlinear model of a quadrotor ( This is the w_y angular speed of the quadri in the body frame). It is a discrete integrator
218        state[0].W.y=(dT()/j_pitch->Value())*((j_roll->Value()-j_yaw->Value())*state[-1].W.x*state[-1].W.z + u_pitch)+state[-1].W.y;
219
220        //u_pitch=arm_length->Value()*k_mot->Value()*(fl_speed*fl_speed+fr_speed*fr_speed-rl_speed*rl_speed-rr_speed*rr_speed)*sqrtf(2)/2;
221        //state[0].W.y=(dT()/j_pitch->Value())*(u_pitch-m->Value()*G*l_cg->Value()*sinf(state[-2].W.y)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.y)+state[-1].W.y;
222
223        /*
224        ** ===================================================================
225        **    u yaw : yaw torque
226        **
227        ** ===================================================================
228        */
229        u_yaw=c_mot->Value()*(fl_speed*fl_speed+rr_speed*rr_speed-fr_speed*fr_speed-rl_speed*rl_speed);
230
231    /// Classical Nonlinear model of a quadrotor ( This is the w_z angular speed of the quadri in the body frame). It is a discrete integrator
232        state[0].W.z=(dT()/j_yaw->Value())* u_yaw +state[-1].W.z;
233
234        //u_yaw=c_mot->Value()*(fl_speed*fl_speed+rr_speed*rr_speed-fr_speed*fr_speed-rl_speed*rl_speed);
235        //state[0].W.z=(dT()/j_yaw->Value())*(u_yaw-f_air_lat->Value()*state[-1].W.z)+state[-1].W.z;
236
237    // compute quaternion from W
238    // Quaternion derivative: dQ = 0.5*(Q*Qw)
239    Quaternion dQ=state[-1].Quat.GetDerivative(state[0].W);
240
241    // Quaternion integration
242    state[0].Quat = state[-1].Quat +dQ*dT();
243    state[0].Quat.Normalize();
244
245    // Calculation of the thrust from the reference speed of motors
246        u_thrust=k_mot->Value()*(fl_speed*fl_speed+fr_speed*fr_speed+rl_speed*rl_speed+rr_speed*rr_speed);
247    Vector3D vect(0,0,-u_thrust);
248    vect.Rotate(state[0].Quat);
249
250    /*
251        ** ===================================================================
252        **     x double integrator
253        **
254        ** ===================================================================
255        */
256        state[0].Pos.x=(dT()*dT()/m->Value())*(vect.x-f_air_lat->Value()*(state[-1].Pos.x-state[-2].Pos.x)/dT())+2*state[-1].Pos.x-state[-2].Pos.x;
257    state[0].Vel.x=(state[0].Pos.x-state[-1].Pos.x)/dT();
258
259        /*
260        ** ===================================================================
261        **     y double integrator
262        **
263        ** ===================================================================
264        */
265        state[0].Pos.y=(dT()*dT()/m->Value())*(vect.y-f_air_lat->Value()*(state[-1].Pos.y-state[-2].Pos.y)/dT())+2*state[-1].Pos.y-state[-2].Pos.y;
266    state[0].Vel.y=(state[0].Pos.y-state[-1].Pos.y)/dT();
267
268        /*
269        ** ===================================================================
270        **     z double integrator
271        **
272        ** ===================================================================
273        */
274        state[0].Pos.z=(dT()*dT()/m->Value())*(vect.z+f_air_vert->Value()*(state[-1].Pos.z-state[-2].Pos.z)/dT()+m->Value()*G)+2*state[-1].Pos.z-state[-2].Pos.z;
275    state[0].Vel.z=(state[0].Pos.z-state[-1].Pos.z)/dT();
276
277#ifndef GL
278    if(state[0].Pos.z<0) state[0].Pos.z=0;
279#endif
280
281}
282
283} // end namespace simulator
284} // end namespace flair
Note: See TracBrowser for help on using the repository browser.