[10] | 1 | // %flair:license{
|
---|
[15] | 2 | // This file is part of the Flair framework distributed under the
|
---|
| 3 | // CECILL-C License, Version 1.0.
|
---|
[10] | 4 | // %flair:license}
|
---|
[8] | 5 | // created: 2012/08/21
|
---|
| 6 | // filename: X4.cpp
|
---|
| 7 | //
|
---|
| 8 | // author: Osamah Saif, Guillaume Sanahuja
|
---|
| 9 | // Copyright Heudiasyc UMR UTC/CNRS 7253
|
---|
| 10 | //
|
---|
| 11 | // version: $Id: $
|
---|
| 12 | //
|
---|
| 13 | // purpose: classe definissant un x4
|
---|
| 14 | //
|
---|
| 15 | /*********************************************************************/
|
---|
| 16 |
|
---|
| 17 | #include "X4.h"
|
---|
| 18 | #include "Simulator.h"
|
---|
| 19 | #include <SimuBldc.h>
|
---|
| 20 | #include <TabWidget.h>
|
---|
| 21 | #include <Tab.h>
|
---|
| 22 | #include <DoubleSpinBox.h>
|
---|
| 23 | #include <GroupBox.h>
|
---|
| 24 | #include <math.h>
|
---|
| 25 | #ifdef GL
|
---|
| 26 | #include <ISceneManager.h>
|
---|
| 27 | #include "Blade.h"
|
---|
| 28 | #include "MeshSceneNode.h"
|
---|
| 29 | #include "Gui.h"
|
---|
| 30 | #include <Mutex.h>
|
---|
| 31 | #endif
|
---|
| 32 |
|
---|
[15] | 33 | #define K_MOT 0.4f // blade animation
|
---|
| 34 | #define G (float)9.81 // gravity ( N/(m/s²) )
|
---|
[8] | 35 |
|
---|
| 36 | #ifdef GL
|
---|
| 37 | using namespace irr::video;
|
---|
| 38 | using namespace irr::scene;
|
---|
| 39 | using namespace irr::core;
|
---|
| 40 | #endif
|
---|
| 41 | using namespace flair::core;
|
---|
| 42 | using namespace flair::gui;
|
---|
| 43 | using namespace flair::actuator;
|
---|
| 44 |
|
---|
[15] | 45 | namespace flair {
|
---|
| 46 | namespace simulator {
|
---|
[8] | 47 |
|
---|
[15] | 48 | X4::X4(const Simulator *parent, std::string name, int dev_id)
|
---|
| 49 | : Model(parent, name) {
|
---|
| 50 | Tab *setup_tab = new Tab(GetTabWidget(), "model");
|
---|
| 51 | m = new DoubleSpinBox(setup_tab->NewRow(), "mass (kg):", 0, 20, 0.1);
|
---|
| 52 | arm_length = new DoubleSpinBox(setup_tab->LastRowLastCol(), "arm length (m):",
|
---|
| 53 | 0, 2, 0.1);
|
---|
| 54 | // l_cg=new DoubleSpinBox(setup_tab,"position G
|
---|
| 55 | // (m):",0,2,-0.5,0.5,0.02);//position du centre de gravité/centre de poussé
|
---|
| 56 | k_mot =
|
---|
| 57 | new DoubleSpinBox(setup_tab->NewRow(), "k_mot:", 0, 1, 0.001,
|
---|
| 58 | 3); // vitesse rotation² (unité arbitraire) -> force (N)
|
---|
| 59 | c_mot = new DoubleSpinBox(
|
---|
| 60 | setup_tab->LastRowLastCol(), "c_mot:", 0, 1, 0.001,
|
---|
| 61 | 3); // vitesse rotation moteur -> couple (N.m/unité arbitraire)
|
---|
| 62 | f_air_vert = new DoubleSpinBox(setup_tab->NewRow(), "f_air_vert:", 0, 10,
|
---|
| 63 | 1); // frottements air depl. vertical, aussi
|
---|
| 64 | // utilisé pour les rotations ( N/(m/s) )
|
---|
| 65 | // (du aux helices en rotation)
|
---|
| 66 | f_air_lat =
|
---|
| 67 | new DoubleSpinBox(setup_tab->LastRowLastCol(), "f_air_lat:", 0, 10,
|
---|
| 68 | 1); // frottements air deplacements lateraux ( N/(m/s) )
|
---|
| 69 | j_roll = new DoubleSpinBox(setup_tab->NewRow(), "j_roll:", 0, 1, 0.001,
|
---|
| 70 | 5); // moment d'inertie d'un axe (N.m.s²/rad)
|
---|
| 71 | j_pitch =
|
---|
| 72 | new DoubleSpinBox(setup_tab->LastRowLastCol(), "j_pitch:", 0, 1, 0.001,
|
---|
| 73 | 5); // moment d'inertie d'un axe (N.m.s²/rad)
|
---|
| 74 | j_yaw = new DoubleSpinBox(setup_tab->LastRowLastCol(), "j_yaw:", 0, 1, 0.001,
|
---|
| 75 | 5); // moment d'inertie d'un axe (N.m.s²/rad)
|
---|
[8] | 76 |
|
---|
[15] | 77 | motors = new SimuBldc(this, name, 4, dev_id);
|
---|
[8] | 78 | }
|
---|
| 79 |
|
---|
[15] | 80 | X4::~X4() {
|
---|
| 81 | // les objets irrlicht seront automatiquement detruits (moteurs, helices,
|
---|
| 82 | // pales) par parenté
|
---|
[8] | 83 | }
|
---|
| 84 |
|
---|
| 85 | #ifdef GL
|
---|
| 86 |
|
---|
[15] | 87 | void X4::Draw(void) {
|
---|
| 88 | // create unite (1m=100cm) UAV; scale will be adapted according to arm_length
|
---|
| 89 | // parameter
|
---|
| 90 | // note that the frame used is irrlicht one:
|
---|
| 91 | // left handed, North East Up
|
---|
| 92 | const IGeometryCreator *geo;
|
---|
| 93 | geo = getGui()->getSceneManager()->getGeometryCreator();
|
---|
[8] | 94 |
|
---|
[15] | 95 | // cylinders are aligned with y axis
|
---|
| 96 | red_arm = geo->createCylinderMesh(2.5, 100, 16, SColor(0, 255, 0, 0));
|
---|
| 97 | black_arm = geo->createCylinderMesh(2.5, 100, 16, SColor(0, 128, 128, 128));
|
---|
| 98 | motor = geo->createCylinderMesh(7.5, 15, 16); //,SColor(0, 128, 128, 128));
|
---|
| 99 | // geo->drop();
|
---|
[8] | 100 |
|
---|
[15] | 101 | ITexture *texture = getGui()->getTexture("carbone.jpg");
|
---|
| 102 | fl_arm = new MeshSceneNode(this, red_arm, vector3df(0, 0, 0),
|
---|
| 103 | vector3df(0, 0, -135));
|
---|
| 104 | fr_arm = new MeshSceneNode(this, red_arm, vector3df(0, 0, 0),
|
---|
| 105 | vector3df(0, 0, -45));
|
---|
| 106 | rl_arm = new MeshSceneNode(this, black_arm, vector3df(0, 0, 0),
|
---|
| 107 | vector3df(0, 0, 135), texture);
|
---|
| 108 | rr_arm = new MeshSceneNode(this, black_arm, vector3df(0, 0, 0),
|
---|
| 109 | vector3df(0, 0, 45), texture);
|
---|
[8] | 110 |
|
---|
[15] | 111 | texture = getGui()->getTexture("metal047.jpg");
|
---|
| 112 | fl_motor = new MeshSceneNode(this, motor, vector3df(70.71, -70.71, 2.5),
|
---|
| 113 | vector3df(90, 0, 0), texture);
|
---|
| 114 | fr_motor = new MeshSceneNode(this, motor, vector3df(70.71, 70.71, 2.5),
|
---|
| 115 | vector3df(90, 0, 0), texture);
|
---|
| 116 | rl_motor = new MeshSceneNode(this, motor, vector3df(-70.71, -70.71, 2.5),
|
---|
| 117 | vector3df(90, 0, 0), texture);
|
---|
| 118 | rr_motor = new MeshSceneNode(this, motor, vector3df(-70.71, 70.71, 2.5),
|
---|
| 119 | vector3df(90, 0, 0), texture);
|
---|
[8] | 120 |
|
---|
[15] | 121 | fl_blade = new Blade(this, vector3df(70.71, -70.71, 17.5));
|
---|
| 122 | fr_blade = new Blade(this, vector3df(70.71, 70.71, 17.5), true);
|
---|
| 123 | rl_blade = new Blade(this, vector3df(-70.71, -70.71, 17.5), true);
|
---|
| 124 | rr_blade = new Blade(this, vector3df(-70.71, 70.71, 17.5));
|
---|
[8] | 125 |
|
---|
[15] | 126 | motor_speed_mutex = new Mutex(this);
|
---|
| 127 | for (int i = 0; i < 4; i++)
|
---|
| 128 | motor_speed[i] = 0;
|
---|
| 129 | ExtraDraw();
|
---|
[8] | 130 | }
|
---|
| 131 |
|
---|
[15] | 132 | void X4::AnimateModel(void) {
|
---|
| 133 | motor_speed_mutex->GetMutex();
|
---|
| 134 | fl_blade->SetRotationSpeed(K_MOT * motor_speed[0]);
|
---|
| 135 | fr_blade->SetRotationSpeed(-K_MOT * motor_speed[1]);
|
---|
| 136 | rl_blade->SetRotationSpeed(-K_MOT * motor_speed[2]);
|
---|
| 137 | rr_blade->SetRotationSpeed(K_MOT * motor_speed[3]);
|
---|
| 138 | motor_speed_mutex->ReleaseMutex();
|
---|
[8] | 139 |
|
---|
[15] | 140 | // adapt UAV size
|
---|
| 141 | if (arm_length->ValueChanged() == true) {
|
---|
| 142 | setScale(arm_length->Value());
|
---|
| 143 | }
|
---|
[8] | 144 | }
|
---|
| 145 |
|
---|
[15] | 146 | size_t X4::dbtSize(void) const {
|
---|
| 147 | return 6 * sizeof(float) + 4 * sizeof(float); // 6ddl+4helices
|
---|
[8] | 148 | }
|
---|
| 149 |
|
---|
[15] | 150 | void X4::WritedbtBuf(
|
---|
| 151 | char *dbtbuf) { /*
|
---|
| 152 | float *buf=(float*)dbtbuf;
|
---|
| 153 | vector3df vect=getPosition();
|
---|
| 154 | memcpy(buf,&vect.X,sizeof(float));
|
---|
| 155 | buf++;
|
---|
| 156 | memcpy(buf,&vect.Y,sizeof(float));
|
---|
| 157 | buf++;
|
---|
| 158 | memcpy(buf,&vect.Z,sizeof(float));
|
---|
| 159 | buf++;
|
---|
| 160 | vect=getRotation();
|
---|
| 161 | memcpy(buf,&vect.X,sizeof(float));
|
---|
| 162 | buf++;
|
---|
| 163 | memcpy(buf,&vect.Y,sizeof(float));
|
---|
| 164 | buf++;
|
---|
| 165 | memcpy(buf,&vect.Z,sizeof(float));
|
---|
| 166 | buf++;
|
---|
| 167 | memcpy(buf,&motors,sizeof(rtsimu_motors));*/
|
---|
[8] | 168 | }
|
---|
| 169 |
|
---|
[15] | 170 | void X4::ReaddbtBuf(
|
---|
| 171 | char *dbtbuf) { /*
|
---|
| 172 | float *buf=(float*)dbtbuf;
|
---|
| 173 | vector3df vect;
|
---|
| 174 | memcpy(&vect.X,buf,sizeof(float));
|
---|
| 175 | buf++;
|
---|
| 176 | memcpy(&vect.Y,buf,sizeof(float));
|
---|
| 177 | buf++;
|
---|
| 178 | memcpy(&vect.Z,buf,sizeof(float));
|
---|
| 179 | buf++;
|
---|
| 180 | setPosition(vect);
|
---|
| 181 | memcpy(&vect.X,buf,sizeof(float));
|
---|
| 182 | buf++;
|
---|
| 183 | memcpy(&vect.Y,buf,sizeof(float));
|
---|
| 184 | buf++;
|
---|
| 185 | memcpy(&vect.Z,buf,sizeof(float));
|
---|
| 186 | buf++;
|
---|
| 187 | ((ISceneNode*)(this))->setRotation(vect);
|
---|
| 188 | memcpy(&motors,buf,sizeof(rtsimu_motors));
|
---|
| 189 | AnimateModele();*/
|
---|
[8] | 190 | }
|
---|
[15] | 191 | #endif // GL
|
---|
[8] | 192 |
|
---|
[15] | 193 | // states are computed on fixed frame NED
|
---|
| 194 | // x north
|
---|
| 195 | // y east
|
---|
| 196 | // z down
|
---|
| 197 | void X4::CalcModel(void) {
|
---|
| 198 | float fl_speed, fr_speed, rl_speed, rr_speed;
|
---|
| 199 | float u_roll, u_pitch, u_yaw, u_thrust;
|
---|
[8] | 200 | #ifdef GL
|
---|
[15] | 201 | motor_speed_mutex->GetMutex();
|
---|
| 202 | #endif // GL
|
---|
| 203 | motors->GetSpeeds(motor_speed);
|
---|
[8] | 204 | #ifdef GL
|
---|
[15] | 205 | motor_speed_mutex->ReleaseMutex();
|
---|
| 206 | #endif // GL
|
---|
| 207 | fl_speed = motor_speed[0];
|
---|
| 208 | fr_speed = motor_speed[1];
|
---|
| 209 | rl_speed = motor_speed[2];
|
---|
| 210 | rr_speed = motor_speed[3];
|
---|
[8] | 211 |
|
---|
[15] | 212 | /*
|
---|
| 213 | ** ===================================================================
|
---|
| 214 | ** u roll: roll torque
|
---|
| 215 | **
|
---|
| 216 | ** ===================================================================
|
---|
| 217 | */
|
---|
| 218 | u_roll = arm_length->Value() * k_mot->Value() *
|
---|
| 219 | (fl_speed * fl_speed + rl_speed * rl_speed - fr_speed * fr_speed -
|
---|
| 220 | rr_speed * rr_speed) *
|
---|
| 221 | sqrtf(2) / 2;
|
---|
[8] | 222 |
|
---|
[15] | 223 | /// Classical Nonlinear model of a quadrotor ( This is the w_x angular speed
|
---|
| 224 | /// of the quadri in the body frame). It is a discrete integrator
|
---|
| 225 | state[0].W.x =
|
---|
| 226 | (dT() / j_roll->Value()) *
|
---|
| 227 | ((j_yaw->Value() - j_pitch->Value()) * state[-1].W.y * state[-1].W.z +
|
---|
| 228 | u_roll) +
|
---|
| 229 | state[-1].W.x;
|
---|
[8] | 230 |
|
---|
[15] | 231 | // u_roll=arm_length->Value()*k_mot->Value()*(fl_speed*fl_speed+rl_speed*rl_speed-fr_speed*fr_speed-rr_speed*rr_speed)*sqrtf(2)/2;
|
---|
| 232 | // state[0].W.x=(dT()/j_roll->Value())*(u_roll-m->Value()*G*l_cg->Value()*sinf(state[-2].W.x)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.x)+state[-1].W.x;
|
---|
[8] | 233 |
|
---|
[15] | 234 | /*
|
---|
| 235 | ** ===================================================================
|
---|
| 236 | ** u pitch : pitch torque
|
---|
| 237 | **
|
---|
| 238 | ** ===================================================================
|
---|
| 239 | */
|
---|
| 240 | u_pitch = arm_length->Value() * k_mot->Value() *
|
---|
| 241 | (fl_speed * fl_speed + fr_speed * fr_speed - rl_speed * rl_speed -
|
---|
| 242 | rr_speed * rr_speed) *
|
---|
| 243 | sqrtf(2) / 2;
|
---|
[8] | 244 |
|
---|
[15] | 245 | /// Classical Nonlinear model of a quadrotor ( This is the w_y angular speed
|
---|
| 246 | /// of the quadri in the body frame). It is a discrete integrator
|
---|
| 247 | state[0].W.y =
|
---|
| 248 | (dT() / j_pitch->Value()) *
|
---|
| 249 | ((j_roll->Value() - j_yaw->Value()) * state[-1].W.x * state[-1].W.z +
|
---|
| 250 | u_pitch) +
|
---|
| 251 | state[-1].W.y;
|
---|
[8] | 252 |
|
---|
[15] | 253 | // u_pitch=arm_length->Value()*k_mot->Value()*(fl_speed*fl_speed+fr_speed*fr_speed-rl_speed*rl_speed-rr_speed*rr_speed)*sqrtf(2)/2;
|
---|
| 254 | // state[0].W.y=(dT()/j_pitch->Value())*(u_pitch-m->Value()*G*l_cg->Value()*sinf(state[-2].W.y)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.y)+state[-1].W.y;
|
---|
[8] | 255 |
|
---|
[15] | 256 | /*
|
---|
| 257 | ** ===================================================================
|
---|
| 258 | ** u yaw : yaw torque
|
---|
| 259 | **
|
---|
| 260 | ** ===================================================================
|
---|
| 261 | */
|
---|
| 262 | u_yaw = c_mot->Value() * (fl_speed * fl_speed + rr_speed * rr_speed -
|
---|
| 263 | fr_speed * fr_speed - rl_speed * rl_speed);
|
---|
[8] | 264 |
|
---|
[15] | 265 | /// Classical Nonlinear model of a quadrotor ( This is the w_z angular speed
|
---|
| 266 | /// of the quadri in the body frame). It is a discrete integrator
|
---|
| 267 | state[0].W.z = (dT() / j_yaw->Value()) * u_yaw + state[-1].W.z;
|
---|
[8] | 268 |
|
---|
[15] | 269 | // u_yaw=c_mot->Value()*(fl_speed*fl_speed+rr_speed*rr_speed-fr_speed*fr_speed-rl_speed*rl_speed);
|
---|
| 270 | // state[0].W.z=(dT()/j_yaw->Value())*(u_yaw-f_air_lat->Value()*state[-1].W.z)+state[-1].W.z;
|
---|
[8] | 271 |
|
---|
[15] | 272 | // compute quaternion from W
|
---|
| 273 | // Quaternion derivative: dQ = 0.5*(Q*Qw)
|
---|
| 274 | Quaternion dQ = state[-1].Quat.GetDerivative(state[0].W);
|
---|
[8] | 275 |
|
---|
[15] | 276 | // Quaternion integration
|
---|
| 277 | state[0].Quat = state[-1].Quat + dQ * dT();
|
---|
| 278 | state[0].Quat.Normalize();
|
---|
[8] | 279 |
|
---|
[15] | 280 | // Calculation of the thrust from the reference speed of motors
|
---|
| 281 | u_thrust = k_mot->Value() * (fl_speed * fl_speed + fr_speed * fr_speed +
|
---|
| 282 | rl_speed * rl_speed + rr_speed * rr_speed);
|
---|
| 283 | Vector3D vect(0, 0, -u_thrust);
|
---|
| 284 | vect.Rotate(state[0].Quat);
|
---|
[8] | 285 |
|
---|
[15] | 286 | /*
|
---|
| 287 | ** ===================================================================
|
---|
| 288 | ** x double integrator
|
---|
| 289 | **
|
---|
| 290 | ** ===================================================================
|
---|
| 291 | */
|
---|
| 292 | state[0].Pos.x =
|
---|
| 293 | (dT() * dT() / m->Value()) *
|
---|
| 294 | (vect.x -
|
---|
| 295 | f_air_lat->Value() * (state[-1].Pos.x - state[-2].Pos.x) / dT()) +
|
---|
| 296 | 2 * state[-1].Pos.x - state[-2].Pos.x;
|
---|
| 297 | state[0].Vel.x = (state[0].Pos.x - state[-1].Pos.x) / dT();
|
---|
[8] | 298 |
|
---|
[15] | 299 | /*
|
---|
| 300 | ** ===================================================================
|
---|
| 301 | ** y double integrator
|
---|
| 302 | **
|
---|
| 303 | ** ===================================================================
|
---|
| 304 | */
|
---|
| 305 | state[0].Pos.y =
|
---|
| 306 | (dT() * dT() / m->Value()) *
|
---|
| 307 | (vect.y -
|
---|
| 308 | f_air_lat->Value() * (state[-1].Pos.y - state[-2].Pos.y) / dT()) +
|
---|
| 309 | 2 * state[-1].Pos.y - state[-2].Pos.y;
|
---|
| 310 | state[0].Vel.y = (state[0].Pos.y - state[-1].Pos.y) / dT();
|
---|
[8] | 311 |
|
---|
[15] | 312 | /*
|
---|
| 313 | ** ===================================================================
|
---|
| 314 | ** z double integrator
|
---|
| 315 | **
|
---|
| 316 | ** ===================================================================
|
---|
| 317 | */
|
---|
| 318 | state[0].Pos.z =
|
---|
| 319 | (dT() * dT() / m->Value()) *
|
---|
| 320 | (vect.z +
|
---|
| 321 | f_air_vert->Value() * (state[-1].Pos.z - state[-2].Pos.z) / dT() +
|
---|
| 322 | m->Value() * G) +
|
---|
| 323 | 2 * state[-1].Pos.z - state[-2].Pos.z;
|
---|
| 324 | state[0].Vel.z = (state[0].Pos.z - state[-1].Pos.z) / dT();
|
---|
[8] | 325 |
|
---|
| 326 | #ifndef GL
|
---|
[15] | 327 | if (state[0].Pos.z < 0)
|
---|
| 328 | state[0].Pos.z = 0;
|
---|
[8] | 329 | #endif
|
---|
| 330 | }
|
---|
| 331 |
|
---|
| 332 | } // end namespace simulator
|
---|
| 333 | } // end namespace flair
|
---|