source: flair-src/trunk/lib/FlairSimulator/src/X8.cpp@ 16

Last change on this file since 16 was 15, checked in by Bayard Gildas, 9 years ago

sources reformatted with flair-format-dir script

File size: 15.2 KB
Line 
1// %flair:license{
2// This file is part of the Flair framework distributed under the
3// CECILL-C License, Version 1.0.
4// %flair:license}
5// created: 2014/04/03
6// filename: X8.cpp
7//
8// author: Majd Saied, Guillaume Sanahuja
9// Copyright Heudiasyc UMR UTC/CNRS 7253
10//
11// version: $Id: $
12//
13// purpose: classe definissant un X8
14//
15/*********************************************************************/
16
17#include "X8.h"
18#include "Simulator.h"
19#include <SimuBldc.h>
20#include <TabWidget.h>
21#include <Tab.h>
22#include <DoubleSpinBox.h>
23#include <GroupBox.h>
24#include <math.h>
25#ifdef GL
26#include <ISceneManager.h>
27#include "Blade.h"
28#include "MeshSceneNode.h"
29#include "Gui.h"
30#include <Mutex.h>
31#endif
32
33#define K_MOT 0.4f // blade animation
34#define G (float)9.81 // gravity ( N/(m/s²) )
35
36#ifdef GL
37using namespace irr::video;
38using namespace irr::scene;
39using namespace irr::core;
40#endif
41using namespace flair::core;
42using namespace flair::gui;
43using namespace flair::actuator;
44
45namespace flair {
46namespace simulator {
47
48X8::X8(const Simulator *parent, std::string name, int dev_id)
49 : Model(parent, name) {
50 Tab *setup_tab = new Tab(GetTabWidget(), "model");
51 m = new DoubleSpinBox(setup_tab->NewRow(), "mass (kg):", 0, 20, 0.1);
52 arm_length = new DoubleSpinBox(setup_tab->LastRowLastCol(), "arm length (m):",
53 0, 2, 0.1);
54 l_cg = new DoubleSpinBox(
55 setup_tab->LastRowLastCol(), "position G (m):", -0.5, 0.5,
56 0.02); // position du centre de gravité/centre de poussé
57 k_mot =
58 new DoubleSpinBox(setup_tab->NewRow(), "k_mot:", 0, 1, 0.001,
59 3); // vitesse rotation² (unité arbitraire) -> force (N)
60 c_mot = new DoubleSpinBox(
61 setup_tab->LastRowLastCol(), "c_mot:", 0, 1, 0.001,
62 3); // vitesse rotation moteur -> couple (N.m/unité arbitraire)
63 f_air_vert = new DoubleSpinBox(setup_tab->NewRow(), "f_air_vert:", 0, 10,
64 1); // frottements air depl. vertical, aussi
65 // utilisé pour les rotations ( N/(m/s) )
66 // (du aux helices en rotation)
67 f_air_lat =
68 new DoubleSpinBox(setup_tab->LastRowLastCol(), "f_air_lat:", 0, 10,
69 1); // frottements air deplacements lateraux ( N/(m/s) )
70 j_roll = new DoubleSpinBox(setup_tab->NewRow(), "j_roll:", 0, 1, 0.001,
71 5); // moment d'inertie d'un axe (N.m.s²/rad)
72 j_pitch =
73 new DoubleSpinBox(setup_tab->LastRowLastCol(), "j_pitch:", 0, 1, 0.001,
74 5); // moment d'inertie d'un axe (N.m.s²/rad)
75 j_yaw = new DoubleSpinBox(setup_tab->LastRowLastCol(), "j_yaw:", 0, 1, 0.001,
76 5); // moment d'inertie d'un axe (N.m.s²/rad)
77 j_r = new DoubleSpinBox(setup_tab->NewRow(), "j_r:", 0, 1,
78 0.001); // moment des helices (N.m.s²/rad)
79 sigma = new DoubleSpinBox(
80 setup_tab->LastRowLastCol(), "sigma:", 0, 1,
81 0.1); // coefficient de perte d efficacite aerodynamique (sans unite)
82 S = new DoubleSpinBox(
83 setup_tab->LastRowLastCol(), "S:", 1, 2,
84 0.1); // coefficient de forme des helices 1<S=1+Ss/Sprop<2 (sans unite)
85
86 motors = new SimuBldc(this, name, 8, dev_id);
87}
88
89void X8::Draw() {
90#ifdef GL
91
92 // create unite (1m=100cm) UAV; scale will be adapted according to arm_length
93 // parameter
94 // note that the frame used is irrlicht one:
95 // left handed, North East Up
96
97 const IGeometryCreator *geo;
98 geo = getGui()->getSceneManager()->getGeometryCreator();
99
100 // cylinders are aligned with y axis
101 red_arm = geo->createCylinderMesh(2.5, 100, 16, SColor(0, 255, 0, 0));
102 black_arm = geo->createCylinderMesh(2.5, 100, 16, SColor(0, 128, 128, 128));
103 motor = geo->createCylinderMesh(7.5, 15, 16); //,SColor(0, 128, 128, 128));
104 // geo->drop();
105
106 ITexture *texture = getGui()->getTexture("carbone.jpg");
107 fl_arm = new MeshSceneNode(this, red_arm, vector3df(0, 0, 0),
108 vector3df(0, 0, -135));
109 fr_arm = new MeshSceneNode(this, red_arm, vector3df(0, 0, 0),
110 vector3df(0, 0, -45));
111 rl_arm = new MeshSceneNode(this, black_arm, vector3df(0, 0, 0),
112 vector3df(0, 0, 135), texture);
113 rr_arm = new MeshSceneNode(this, black_arm, vector3df(0, 0, 0),
114 vector3df(0, 0, 45), texture);
115
116 texture = getGui()->getTexture("metal047.jpg");
117 tfl_motor = new MeshSceneNode(this, motor, vector3df(70.71, -70.71, 2.5),
118 vector3df(90, 0, 0), texture);
119 tfr_motor = new MeshSceneNode(this, motor, vector3df(70.71, 70.71, 2.5),
120 vector3df(90, 0, 0), texture);
121 trl_motor = new MeshSceneNode(this, motor, vector3df(-70.71, -70.71, 2.5),
122 vector3df(90, 0, 0), texture);
123 trr_motor = new MeshSceneNode(this, motor, vector3df(-70.71, 70.71, 2.5),
124 vector3df(90, 0, 0), texture);
125
126 bfl_motor = new MeshSceneNode(this, motor, vector3df(70.71, -70.71, -17.5),
127 vector3df(90, 0, 0), texture);
128 bfr_motor = new MeshSceneNode(this, motor, vector3df(70.71, 70.71, -17.5),
129 vector3df(90, 0, 0), texture);
130 brl_motor = new MeshSceneNode(this, motor, vector3df(-70.71, -70.71, -17.5),
131 vector3df(90, 0, 0), texture);
132 brr_motor = new MeshSceneNode(this, motor, vector3df(-70.71, 70.71, -17.5),
133 vector3df(90, 0, 0), texture);
134
135 tfl_blade = new Blade(this, vector3df(70.71, -70.71, 17.5));
136 tfr_blade = new Blade(this, vector3df(70.71, 70.71, 17.5), true);
137 trl_blade = new Blade(this, vector3df(-70.71, -70.71, 17.5), true);
138 trr_blade = new Blade(this, vector3df(-70.71, 70.71, 17.5));
139
140 bfl_blade = new Blade(this, vector3df(70.71, -70.71, -17.5));
141 bfr_blade = new Blade(this, vector3df(70.71, 70.71, -17.5), true);
142 brl_blade = new Blade(this, vector3df(-70.71, -70.71, -17.5), true);
143 brr_blade = new Blade(this, vector3df(-70.71, 70.71, -17.5));
144
145 motor_speed_mutex = new Mutex(this);
146 for (int i = 0; i < 8; i++)
147 motor_speed[i] = 0;
148 ExtraDraw();
149#endif
150}
151
152X8::~X8() {
153 // les objets irrlicht seront automatiquement detruits (moteurs, helices,
154 // pales) par parenté
155}
156
157#ifdef GL
158void X8::AnimateModel(void) {
159 motor_speed_mutex->GetMutex();
160 tfl_blade->SetRotationSpeed(K_MOT * motor_speed[0]);
161 tfr_blade->SetRotationSpeed(-K_MOT * motor_speed[1]);
162 trl_blade->SetRotationSpeed(-K_MOT * motor_speed[2]);
163 trr_blade->SetRotationSpeed(K_MOT * motor_speed[3]);
164
165 bfl_blade->SetRotationSpeed(-K_MOT * motor_speed[4]);
166 bfr_blade->SetRotationSpeed(K_MOT * motor_speed[5]);
167 brl_blade->SetRotationSpeed(K_MOT * motor_speed[6]);
168 brr_blade->SetRotationSpeed(-K_MOT * motor_speed[7]);
169 motor_speed_mutex->ReleaseMutex();
170
171 // adapt UAV size
172 if (arm_length->ValueChanged() == true) {
173 setScale(arm_length->Value());
174 }
175}
176
177size_t X8::dbtSize(void) const {
178 return 6 * sizeof(float) + 4 * sizeof(float); // 6ddl+4helices
179}
180
181void X8::WritedbtBuf(
182 char *dbtbuf) { /*
183 float *buf=(float*)dbtbuf;
184 vector3df vect=getPosition();
185 memcpy(buf,&vect.X,sizeof(float));
186 buf++;
187 memcpy(buf,&vect.Y,sizeof(float));
188 buf++;
189 memcpy(buf,&vect.Z,sizeof(float));
190 buf++;
191 vect=getRotation();
192 memcpy(buf,&vect.X,sizeof(float));
193 buf++;
194 memcpy(buf,&vect.Y,sizeof(float));
195 buf++;
196 memcpy(buf,&vect.Z,sizeof(float));
197 buf++;
198 memcpy(buf,&motors,sizeof(rtsimu_motors));*/
199}
200
201void X8::ReaddbtBuf(
202 char *dbtbuf) { /*
203 float *buf=(float*)dbtbuf;
204 vector3df vect;
205 memcpy(&vect.X,buf,sizeof(float));
206 buf++;
207 memcpy(&vect.Y,buf,sizeof(float));
208 buf++;
209 memcpy(&vect.Z,buf,sizeof(float));
210 buf++;
211 setPosition(vect);
212 memcpy(&vect.X,buf,sizeof(float));
213 buf++;
214 memcpy(&vect.Y,buf,sizeof(float));
215 buf++;
216 memcpy(&vect.Z,buf,sizeof(float));
217 buf++;
218 ((ISceneNode*)(this))->setRotation(vect);
219 memcpy(&motors,buf,sizeof(rtsimu_motors));
220 AnimateModele();*/
221}
222#endif // GL
223
224// states are computed on fixed frame NED
225// x north
226// y east
227// z down
228void X8::CalcModel(void) {
229 float tfl_speed, tfr_speed, trl_speed, trr_speed;
230 float bfl_speed, bfr_speed, brl_speed, brr_speed;
231 float u_roll, u_pitch, u_yaw, u_thrust;
232 float omega;
233#ifdef GL
234 motor_speed_mutex->GetMutex();
235#endif // GL
236 motors->GetSpeeds(motor_speed);
237#ifdef GL
238 motor_speed_mutex->ReleaseMutex();
239#endif // GL
240 tfl_speed = motor_speed[0];
241 tfr_speed = motor_speed[1];
242 trl_speed = motor_speed[2];
243 trr_speed = motor_speed[3];
244 bfl_speed = motor_speed[4];
245 bfr_speed = motor_speed[5];
246 brl_speed = motor_speed[6];
247 brr_speed = motor_speed[7];
248
249 omega = tfl_speed + brl_speed + trr_speed + bfr_speed - bfl_speed -
250 trl_speed - brr_speed - tfr_speed;
251
252 /*
253 ** ===================================================================
254 ** u roll: roll torque
255 **
256 ** ===================================================================
257 */
258
259 u_roll = arm_length->Value() * k_mot->Value() *
260 (sigma->Value() * tfl_speed * tfl_speed + bfl_speed * bfl_speed +
261 sigma->Value() * trl_speed * trl_speed + brl_speed * brl_speed -
262 sigma->Value() * tfr_speed * tfr_speed - bfr_speed * bfr_speed -
263 sigma->Value() * trr_speed * trr_speed - brr_speed * brr_speed) *
264 sqrtf(2) / 2;
265
266 /// Classical Nonlinear model of a quadrotor ( This is the w_x angular speed
267 /// of the quadri in the body frame). It is a discrete integrator
268 // state[0].W.x=(dT()/j_roll->Value())*((j_yaw->Value()-j_pitch->Value())*state[-1].W.y*state[-1].W.z-j_r->Value()*state[-1].W.y*omega
269 // + u_roll) +state[-1].W.x;//Osamah
270 state[0].W.x =
271 (dT() / j_roll->Value()) *
272 ((j_pitch->Value() - j_yaw->Value()) * state[-1].W.y * state[-1].W.z -
273 j_r->Value() * state[-1].W.y * omega + u_roll) +
274 state[-1].W.x; // Majd
275
276 // state[0].W.x=(dT()/j_roll->Value())*(u_roll-m->Value()*G*l_cg->Value()*sinf(state[-2].W.x)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.x)+state[-1].W.x;
277
278 /*
279 ** ===================================================================
280 ** u pitch : pitch torque
281 **
282 ** ===================================================================
283 */
284 u_pitch = arm_length->Value() * k_mot->Value() *
285 (sigma->Value() * tfl_speed * tfl_speed + bfl_speed * bfl_speed +
286 sigma->Value() * tfr_speed * tfr_speed + bfr_speed * bfr_speed -
287 sigma->Value() * trl_speed * trl_speed - brl_speed * brl_speed -
288 sigma->Value() * trr_speed * trr_speed - brr_speed * brr_speed) *
289 sqrtf(2) / 2;
290
291 /// Classical Nonlinear model of a quadrotor ( This is the w_y angular speed
292 /// of the quadri in the body frame). It is a discrete integrator
293 // state[0].W.y=(dT()/j_pitch->Value())*((j_roll->Value()-j_yaw->Value())*state[-1].W.x*state[-1].W.z-j_r->Value()*state[-1].W.x*omega
294 // + u_pitch)+state[-1].W.y;//Osamah
295 state[0].W.y =
296 (dT() / j_pitch->Value()) *
297 ((j_yaw->Value() - j_roll->Value()) * state[-1].W.x * state[-1].W.z -
298 j_r->Value() * state[-1].W.x * omega + u_pitch) +
299 state[-1].W.y; // Majd
300
301 // state[0].W.y=(dT()/j_pitch->Value())*(u_pitch-m->Value()*G*l_cg->Value()*sinf(state[-2].W.y)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.y)+state[-1].W.y;
302
303 /*
304 ** ===================================================================
305 ** u yaw : yaw torque
306 **
307 ** ===================================================================
308 */
309 u_yaw = c_mot->Value() * (tfl_speed * tfl_speed - bfl_speed * bfl_speed +
310 trr_speed * trr_speed - brr_speed * brr_speed -
311 tfr_speed * tfr_speed + bfr_speed * bfr_speed -
312 trl_speed * trl_speed + brl_speed * brl_speed);
313
314 /// Classical Nonlinear model of a quadrotor ( This is the w_z angular speed
315 /// of the quadri in the body frame). It is a discrete integrator
316 // state[0].W.z=(dT()/j_yaw->Value())* u_yaw +state[-1].W.z;//Osamah
317 state[0].W.z =
318 (dT() / j_yaw->Value()) * ((j_roll->Value() - j_pitch->Value()) *
319 state[-1].W.x * state[-1].W.y +
320 u_yaw) +
321 state[-1].W.z; // Majd
322
323 // state[0].W.z=(dT()/j_yaw->Value())*(u_yaw-f_air_lat->Value()*state[-1].W.z)+state[-1].W.z;
324
325 // compute quaternion from W
326 // Quaternion derivative: dQ = 0.5*(Q*Qw)
327 Quaternion dQ = state[-1].Quat.GetDerivative(state[0].W);
328
329 // Quaternion integration
330 state[0].Quat = state[-1].Quat + dQ * dT();
331 state[0].Quat.Normalize();
332
333 // Calculation of the thrust from the reference speed of motors
334 u_thrust =
335 k_mot->Value() * S->Value() *
336 (sigma->Value() * tfl_speed * tfl_speed +
337 sigma->Value() * tfr_speed * tfr_speed +
338 sigma->Value() * trl_speed * trl_speed +
339 sigma->Value() * trr_speed * trr_speed + bfl_speed * bfl_speed +
340 bfr_speed * bfr_speed + brl_speed * brl_speed + brr_speed * brr_speed);
341 Vector3D vect(0, 0, -u_thrust);
342 vect.Rotate(state[0].Quat);
343
344 /*
345 ** ===================================================================
346 ** x double integrator
347 **
348 ** ===================================================================
349 */
350 state[0].Pos.x =
351 (dT() * dT() / m->Value()) *
352 (vect.x -
353 f_air_lat->Value() * (state[-1].Pos.x - state[-2].Pos.x) / dT()) +
354 2 * state[-1].Pos.x - state[-2].Pos.x;
355 state[0].Vel.x = (state[0].Pos.x - state[-1].Pos.x) / dT();
356
357 /*
358 ** ===================================================================
359 ** y double integrator
360 **
361 ** ===================================================================
362 */
363 state[0].Pos.y =
364 (dT() * dT() / m->Value()) *
365 (vect.y -
366 f_air_lat->Value() * (state[-1].Pos.y - state[-2].Pos.y) / dT()) +
367 2 * state[-1].Pos.y - state[-2].Pos.y;
368 state[0].Vel.y = (state[0].Pos.y - state[-1].Pos.y) / dT();
369
370 /*
371 ** ===================================================================
372 ** z double integrator
373 **
374 ** ===================================================================
375 */
376 state[0].Pos.z =
377 (dT() * dT() / m->Value()) *
378 (vect.z +
379 f_air_vert->Value() * (state[-1].Pos.z - state[-2].Pos.z) / dT() +
380 m->Value() * G) +
381 2 * state[-1].Pos.z - state[-2].Pos.z;
382 state[0].Vel.z = (state[0].Pos.z - state[-1].Pos.z) / dT();
383
384#ifndef GL
385 if (state[0].Pos.z < 0)
386 state[0].Pos.z = 0;
387#endif
388}
389
390} // end namespace simulator
391} // end namespace flair
Note: See TracBrowser for help on using the repository browser.