1 | // %flair:license{
|
---|
2 | // This file is part of the Flair framework distributed under the
|
---|
3 | // CECILL-C License, Version 1.0.
|
---|
4 | // %flair:license}
|
---|
5 | // created: 2014/04/03
|
---|
6 | // filename: X8.cpp
|
---|
7 | //
|
---|
8 | // author: Majd Saied, Guillaume Sanahuja
|
---|
9 | // Copyright Heudiasyc UMR UTC/CNRS 7253
|
---|
10 | //
|
---|
11 | // version: $Id: $
|
---|
12 | //
|
---|
13 | // purpose: classe definissant un X8
|
---|
14 | //
|
---|
15 | /*********************************************************************/
|
---|
16 |
|
---|
17 | #include "X8.h"
|
---|
18 | #include "Simulator.h"
|
---|
19 | #include <SimuBldc.h>
|
---|
20 | #include <TabWidget.h>
|
---|
21 | #include <Tab.h>
|
---|
22 | #include <DoubleSpinBox.h>
|
---|
23 | #include <GroupBox.h>
|
---|
24 | #include <math.h>
|
---|
25 | #ifdef GL
|
---|
26 | #include <ISceneManager.h>
|
---|
27 | #include "Blade.h"
|
---|
28 | #include "MeshSceneNode.h"
|
---|
29 | #include "Gui.h"
|
---|
30 | #include <Mutex.h>
|
---|
31 | #endif
|
---|
32 |
|
---|
33 | #define K_MOT 0.4f // blade animation
|
---|
34 | #define G (float)9.81 // gravity ( N/(m/s²) )
|
---|
35 |
|
---|
36 | #ifdef GL
|
---|
37 | using namespace irr::video;
|
---|
38 | using namespace irr::scene;
|
---|
39 | using namespace irr::core;
|
---|
40 | #endif
|
---|
41 | using namespace flair::core;
|
---|
42 | using namespace flair::gui;
|
---|
43 | using namespace flair::actuator;
|
---|
44 |
|
---|
45 | namespace flair {
|
---|
46 | namespace simulator {
|
---|
47 |
|
---|
48 | X8::X8(const Simulator *parent, std::string name, int dev_id)
|
---|
49 | : Model(parent, name) {
|
---|
50 | Tab *setup_tab = new Tab(GetTabWidget(), "model");
|
---|
51 | m = new DoubleSpinBox(setup_tab->NewRow(), "mass (kg):", 0, 20, 0.1);
|
---|
52 | arm_length = new DoubleSpinBox(setup_tab->LastRowLastCol(), "arm length (m):",
|
---|
53 | 0, 2, 0.1);
|
---|
54 | l_cg = new DoubleSpinBox(
|
---|
55 | setup_tab->LastRowLastCol(), "position G (m):", -0.5, 0.5,
|
---|
56 | 0.02); // position du centre de gravité/centre de poussé
|
---|
57 | k_mot =
|
---|
58 | new DoubleSpinBox(setup_tab->NewRow(), "k_mot:", 0, 1, 0.001,
|
---|
59 | 3); // vitesse rotation² (unité arbitraire) -> force (N)
|
---|
60 | c_mot = new DoubleSpinBox(
|
---|
61 | setup_tab->LastRowLastCol(), "c_mot:", 0, 1, 0.001,
|
---|
62 | 3); // vitesse rotation moteur -> couple (N.m/unité arbitraire)
|
---|
63 | f_air_vert = new DoubleSpinBox(setup_tab->NewRow(), "f_air_vert:", 0, 10,
|
---|
64 | 1); // frottements air depl. vertical, aussi
|
---|
65 | // utilisé pour les rotations ( N/(m/s) )
|
---|
66 | // (du aux helices en rotation)
|
---|
67 | f_air_lat =
|
---|
68 | new DoubleSpinBox(setup_tab->LastRowLastCol(), "f_air_lat:", 0, 10,
|
---|
69 | 1); // frottements air deplacements lateraux ( N/(m/s) )
|
---|
70 | j_roll = new DoubleSpinBox(setup_tab->NewRow(), "j_roll:", 0, 1, 0.001,
|
---|
71 | 5); // moment d'inertie d'un axe (N.m.s²/rad)
|
---|
72 | j_pitch =
|
---|
73 | new DoubleSpinBox(setup_tab->LastRowLastCol(), "j_pitch:", 0, 1, 0.001,
|
---|
74 | 5); // moment d'inertie d'un axe (N.m.s²/rad)
|
---|
75 | j_yaw = new DoubleSpinBox(setup_tab->LastRowLastCol(), "j_yaw:", 0, 1, 0.001,
|
---|
76 | 5); // moment d'inertie d'un axe (N.m.s²/rad)
|
---|
77 | j_r = new DoubleSpinBox(setup_tab->NewRow(), "j_r:", 0, 1,
|
---|
78 | 0.001); // moment des helices (N.m.s²/rad)
|
---|
79 | sigma = new DoubleSpinBox(
|
---|
80 | setup_tab->LastRowLastCol(), "sigma:", 0, 1,
|
---|
81 | 0.1); // coefficient de perte d efficacite aerodynamique (sans unite)
|
---|
82 | S = new DoubleSpinBox(
|
---|
83 | setup_tab->LastRowLastCol(), "S:", 1, 2,
|
---|
84 | 0.1); // coefficient de forme des helices 1<S=1+Ss/Sprop<2 (sans unite)
|
---|
85 |
|
---|
86 | motors = new SimuBldc(this, name, 8, dev_id);
|
---|
87 | }
|
---|
88 |
|
---|
89 | void X8::Draw() {
|
---|
90 | #ifdef GL
|
---|
91 |
|
---|
92 | // create unite (1m=100cm) UAV; scale will be adapted according to arm_length
|
---|
93 | // parameter
|
---|
94 | // note that the frame used is irrlicht one:
|
---|
95 | // left handed, North East Up
|
---|
96 |
|
---|
97 | const IGeometryCreator *geo;
|
---|
98 | geo = getGui()->getSceneManager()->getGeometryCreator();
|
---|
99 |
|
---|
100 | // cylinders are aligned with y axis
|
---|
101 | red_arm = geo->createCylinderMesh(2.5, 100, 16, SColor(0, 255, 0, 0));
|
---|
102 | black_arm = geo->createCylinderMesh(2.5, 100, 16, SColor(0, 128, 128, 128));
|
---|
103 | motor = geo->createCylinderMesh(7.5, 15, 16); //,SColor(0, 128, 128, 128));
|
---|
104 | // geo->drop();
|
---|
105 |
|
---|
106 | ITexture *texture = getGui()->getTexture("carbone.jpg");
|
---|
107 | fl_arm = new MeshSceneNode(this, red_arm, vector3df(0, 0, 0),
|
---|
108 | vector3df(0, 0, -135));
|
---|
109 | fr_arm = new MeshSceneNode(this, red_arm, vector3df(0, 0, 0),
|
---|
110 | vector3df(0, 0, -45));
|
---|
111 | rl_arm = new MeshSceneNode(this, black_arm, vector3df(0, 0, 0),
|
---|
112 | vector3df(0, 0, 135), texture);
|
---|
113 | rr_arm = new MeshSceneNode(this, black_arm, vector3df(0, 0, 0),
|
---|
114 | vector3df(0, 0, 45), texture);
|
---|
115 |
|
---|
116 | texture = getGui()->getTexture("metal047.jpg");
|
---|
117 | tfl_motor = new MeshSceneNode(this, motor, vector3df(70.71, -70.71, 2.5),
|
---|
118 | vector3df(90, 0, 0), texture);
|
---|
119 | tfr_motor = new MeshSceneNode(this, motor, vector3df(70.71, 70.71, 2.5),
|
---|
120 | vector3df(90, 0, 0), texture);
|
---|
121 | trl_motor = new MeshSceneNode(this, motor, vector3df(-70.71, -70.71, 2.5),
|
---|
122 | vector3df(90, 0, 0), texture);
|
---|
123 | trr_motor = new MeshSceneNode(this, motor, vector3df(-70.71, 70.71, 2.5),
|
---|
124 | vector3df(90, 0, 0), texture);
|
---|
125 |
|
---|
126 | bfl_motor = new MeshSceneNode(this, motor, vector3df(70.71, -70.71, -17.5),
|
---|
127 | vector3df(90, 0, 0), texture);
|
---|
128 | bfr_motor = new MeshSceneNode(this, motor, vector3df(70.71, 70.71, -17.5),
|
---|
129 | vector3df(90, 0, 0), texture);
|
---|
130 | brl_motor = new MeshSceneNode(this, motor, vector3df(-70.71, -70.71, -17.5),
|
---|
131 | vector3df(90, 0, 0), texture);
|
---|
132 | brr_motor = new MeshSceneNode(this, motor, vector3df(-70.71, 70.71, -17.5),
|
---|
133 | vector3df(90, 0, 0), texture);
|
---|
134 |
|
---|
135 | tfl_blade = new Blade(this, vector3df(70.71, -70.71, 17.5));
|
---|
136 | tfr_blade = new Blade(this, vector3df(70.71, 70.71, 17.5), true);
|
---|
137 | trl_blade = new Blade(this, vector3df(-70.71, -70.71, 17.5), true);
|
---|
138 | trr_blade = new Blade(this, vector3df(-70.71, 70.71, 17.5));
|
---|
139 |
|
---|
140 | bfl_blade = new Blade(this, vector3df(70.71, -70.71, -17.5));
|
---|
141 | bfr_blade = new Blade(this, vector3df(70.71, 70.71, -17.5), true);
|
---|
142 | brl_blade = new Blade(this, vector3df(-70.71, -70.71, -17.5), true);
|
---|
143 | brr_blade = new Blade(this, vector3df(-70.71, 70.71, -17.5));
|
---|
144 |
|
---|
145 | motor_speed_mutex = new Mutex(this);
|
---|
146 | for (int i = 0; i < 8; i++)
|
---|
147 | motor_speed[i] = 0;
|
---|
148 | ExtraDraw();
|
---|
149 | #endif
|
---|
150 | }
|
---|
151 |
|
---|
152 | X8::~X8() {
|
---|
153 | // les objets irrlicht seront automatiquement detruits (moteurs, helices,
|
---|
154 | // pales) par parenté
|
---|
155 | }
|
---|
156 |
|
---|
157 | #ifdef GL
|
---|
158 | void X8::AnimateModel(void) {
|
---|
159 | motor_speed_mutex->GetMutex();
|
---|
160 | tfl_blade->SetRotationSpeed(K_MOT * motor_speed[0]);
|
---|
161 | tfr_blade->SetRotationSpeed(-K_MOT * motor_speed[1]);
|
---|
162 | trl_blade->SetRotationSpeed(-K_MOT * motor_speed[2]);
|
---|
163 | trr_blade->SetRotationSpeed(K_MOT * motor_speed[3]);
|
---|
164 |
|
---|
165 | bfl_blade->SetRotationSpeed(-K_MOT * motor_speed[4]);
|
---|
166 | bfr_blade->SetRotationSpeed(K_MOT * motor_speed[5]);
|
---|
167 | brl_blade->SetRotationSpeed(K_MOT * motor_speed[6]);
|
---|
168 | brr_blade->SetRotationSpeed(-K_MOT * motor_speed[7]);
|
---|
169 | motor_speed_mutex->ReleaseMutex();
|
---|
170 |
|
---|
171 | // adapt UAV size
|
---|
172 | if (arm_length->ValueChanged() == true) {
|
---|
173 | setScale(arm_length->Value());
|
---|
174 | }
|
---|
175 | }
|
---|
176 |
|
---|
177 | size_t X8::dbtSize(void) const {
|
---|
178 | return 6 * sizeof(float) + 4 * sizeof(float); // 6ddl+4helices
|
---|
179 | }
|
---|
180 |
|
---|
181 | void X8::WritedbtBuf(
|
---|
182 | char *dbtbuf) { /*
|
---|
183 | float *buf=(float*)dbtbuf;
|
---|
184 | vector3df vect=getPosition();
|
---|
185 | memcpy(buf,&vect.X,sizeof(float));
|
---|
186 | buf++;
|
---|
187 | memcpy(buf,&vect.Y,sizeof(float));
|
---|
188 | buf++;
|
---|
189 | memcpy(buf,&vect.Z,sizeof(float));
|
---|
190 | buf++;
|
---|
191 | vect=getRotation();
|
---|
192 | memcpy(buf,&vect.X,sizeof(float));
|
---|
193 | buf++;
|
---|
194 | memcpy(buf,&vect.Y,sizeof(float));
|
---|
195 | buf++;
|
---|
196 | memcpy(buf,&vect.Z,sizeof(float));
|
---|
197 | buf++;
|
---|
198 | memcpy(buf,&motors,sizeof(rtsimu_motors));*/
|
---|
199 | }
|
---|
200 |
|
---|
201 | void X8::ReaddbtBuf(
|
---|
202 | char *dbtbuf) { /*
|
---|
203 | float *buf=(float*)dbtbuf;
|
---|
204 | vector3df vect;
|
---|
205 | memcpy(&vect.X,buf,sizeof(float));
|
---|
206 | buf++;
|
---|
207 | memcpy(&vect.Y,buf,sizeof(float));
|
---|
208 | buf++;
|
---|
209 | memcpy(&vect.Z,buf,sizeof(float));
|
---|
210 | buf++;
|
---|
211 | setPosition(vect);
|
---|
212 | memcpy(&vect.X,buf,sizeof(float));
|
---|
213 | buf++;
|
---|
214 | memcpy(&vect.Y,buf,sizeof(float));
|
---|
215 | buf++;
|
---|
216 | memcpy(&vect.Z,buf,sizeof(float));
|
---|
217 | buf++;
|
---|
218 | ((ISceneNode*)(this))->setRotation(vect);
|
---|
219 | memcpy(&motors,buf,sizeof(rtsimu_motors));
|
---|
220 | AnimateModele();*/
|
---|
221 | }
|
---|
222 | #endif // GL
|
---|
223 |
|
---|
224 | // states are computed on fixed frame NED
|
---|
225 | // x north
|
---|
226 | // y east
|
---|
227 | // z down
|
---|
228 | void X8::CalcModel(void) {
|
---|
229 | float tfl_speed, tfr_speed, trl_speed, trr_speed;
|
---|
230 | float bfl_speed, bfr_speed, brl_speed, brr_speed;
|
---|
231 | float u_roll, u_pitch, u_yaw, u_thrust;
|
---|
232 | float omega;
|
---|
233 | #ifdef GL
|
---|
234 | motor_speed_mutex->GetMutex();
|
---|
235 | #endif // GL
|
---|
236 | motors->GetSpeeds(motor_speed);
|
---|
237 | #ifdef GL
|
---|
238 | motor_speed_mutex->ReleaseMutex();
|
---|
239 | #endif // GL
|
---|
240 | tfl_speed = motor_speed[0];
|
---|
241 | tfr_speed = motor_speed[1];
|
---|
242 | trl_speed = motor_speed[2];
|
---|
243 | trr_speed = motor_speed[3];
|
---|
244 | bfl_speed = motor_speed[4];
|
---|
245 | bfr_speed = motor_speed[5];
|
---|
246 | brl_speed = motor_speed[6];
|
---|
247 | brr_speed = motor_speed[7];
|
---|
248 |
|
---|
249 | omega = tfl_speed + brl_speed + trr_speed + bfr_speed - bfl_speed -
|
---|
250 | trl_speed - brr_speed - tfr_speed;
|
---|
251 |
|
---|
252 | /*
|
---|
253 | ** ===================================================================
|
---|
254 | ** u roll: roll torque
|
---|
255 | **
|
---|
256 | ** ===================================================================
|
---|
257 | */
|
---|
258 |
|
---|
259 | u_roll = arm_length->Value() * k_mot->Value() *
|
---|
260 | (sigma->Value() * tfl_speed * tfl_speed + bfl_speed * bfl_speed +
|
---|
261 | sigma->Value() * trl_speed * trl_speed + brl_speed * brl_speed -
|
---|
262 | sigma->Value() * tfr_speed * tfr_speed - bfr_speed * bfr_speed -
|
---|
263 | sigma->Value() * trr_speed * trr_speed - brr_speed * brr_speed) *
|
---|
264 | sqrtf(2) / 2;
|
---|
265 |
|
---|
266 | /// Classical Nonlinear model of a quadrotor ( This is the w_x angular speed
|
---|
267 | /// of the quadri in the body frame). It is a discrete integrator
|
---|
268 | // state[0].W.x=(dT()/j_roll->Value())*((j_yaw->Value()-j_pitch->Value())*state[-1].W.y*state[-1].W.z-j_r->Value()*state[-1].W.y*omega
|
---|
269 | // + u_roll) +state[-1].W.x;//Osamah
|
---|
270 | state[0].W.x =
|
---|
271 | (dT() / j_roll->Value()) *
|
---|
272 | ((j_pitch->Value() - j_yaw->Value()) * state[-1].W.y * state[-1].W.z -
|
---|
273 | j_r->Value() * state[-1].W.y * omega + u_roll) +
|
---|
274 | state[-1].W.x; // Majd
|
---|
275 |
|
---|
276 | // state[0].W.x=(dT()/j_roll->Value())*(u_roll-m->Value()*G*l_cg->Value()*sinf(state[-2].W.x)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.x)+state[-1].W.x;
|
---|
277 |
|
---|
278 | /*
|
---|
279 | ** ===================================================================
|
---|
280 | ** u pitch : pitch torque
|
---|
281 | **
|
---|
282 | ** ===================================================================
|
---|
283 | */
|
---|
284 | u_pitch = arm_length->Value() * k_mot->Value() *
|
---|
285 | (sigma->Value() * tfl_speed * tfl_speed + bfl_speed * bfl_speed +
|
---|
286 | sigma->Value() * tfr_speed * tfr_speed + bfr_speed * bfr_speed -
|
---|
287 | sigma->Value() * trl_speed * trl_speed - brl_speed * brl_speed -
|
---|
288 | sigma->Value() * trr_speed * trr_speed - brr_speed * brr_speed) *
|
---|
289 | sqrtf(2) / 2;
|
---|
290 |
|
---|
291 | /// Classical Nonlinear model of a quadrotor ( This is the w_y angular speed
|
---|
292 | /// of the quadri in the body frame). It is a discrete integrator
|
---|
293 | // state[0].W.y=(dT()/j_pitch->Value())*((j_roll->Value()-j_yaw->Value())*state[-1].W.x*state[-1].W.z-j_r->Value()*state[-1].W.x*omega
|
---|
294 | // + u_pitch)+state[-1].W.y;//Osamah
|
---|
295 | state[0].W.y =
|
---|
296 | (dT() / j_pitch->Value()) *
|
---|
297 | ((j_yaw->Value() - j_roll->Value()) * state[-1].W.x * state[-1].W.z -
|
---|
298 | j_r->Value() * state[-1].W.x * omega + u_pitch) +
|
---|
299 | state[-1].W.y; // Majd
|
---|
300 |
|
---|
301 | // state[0].W.y=(dT()/j_pitch->Value())*(u_pitch-m->Value()*G*l_cg->Value()*sinf(state[-2].W.y)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.y)+state[-1].W.y;
|
---|
302 |
|
---|
303 | /*
|
---|
304 | ** ===================================================================
|
---|
305 | ** u yaw : yaw torque
|
---|
306 | **
|
---|
307 | ** ===================================================================
|
---|
308 | */
|
---|
309 | u_yaw = c_mot->Value() * (tfl_speed * tfl_speed - bfl_speed * bfl_speed +
|
---|
310 | trr_speed * trr_speed - brr_speed * brr_speed -
|
---|
311 | tfr_speed * tfr_speed + bfr_speed * bfr_speed -
|
---|
312 | trl_speed * trl_speed + brl_speed * brl_speed);
|
---|
313 |
|
---|
314 | /// Classical Nonlinear model of a quadrotor ( This is the w_z angular speed
|
---|
315 | /// of the quadri in the body frame). It is a discrete integrator
|
---|
316 | // state[0].W.z=(dT()/j_yaw->Value())* u_yaw +state[-1].W.z;//Osamah
|
---|
317 | state[0].W.z =
|
---|
318 | (dT() / j_yaw->Value()) * ((j_roll->Value() - j_pitch->Value()) *
|
---|
319 | state[-1].W.x * state[-1].W.y +
|
---|
320 | u_yaw) +
|
---|
321 | state[-1].W.z; // Majd
|
---|
322 |
|
---|
323 | // state[0].W.z=(dT()/j_yaw->Value())*(u_yaw-f_air_lat->Value()*state[-1].W.z)+state[-1].W.z;
|
---|
324 |
|
---|
325 | // compute quaternion from W
|
---|
326 | // Quaternion derivative: dQ = 0.5*(Q*Qw)
|
---|
327 | Quaternion dQ = state[-1].Quat.GetDerivative(state[0].W);
|
---|
328 |
|
---|
329 | // Quaternion integration
|
---|
330 | state[0].Quat = state[-1].Quat + dQ * dT();
|
---|
331 | state[0].Quat.Normalize();
|
---|
332 |
|
---|
333 | // Calculation of the thrust from the reference speed of motors
|
---|
334 | u_thrust =
|
---|
335 | k_mot->Value() * S->Value() *
|
---|
336 | (sigma->Value() * tfl_speed * tfl_speed +
|
---|
337 | sigma->Value() * tfr_speed * tfr_speed +
|
---|
338 | sigma->Value() * trl_speed * trl_speed +
|
---|
339 | sigma->Value() * trr_speed * trr_speed + bfl_speed * bfl_speed +
|
---|
340 | bfr_speed * bfr_speed + brl_speed * brl_speed + brr_speed * brr_speed);
|
---|
341 | Vector3D vect(0, 0, -u_thrust);
|
---|
342 | vect.Rotate(state[0].Quat);
|
---|
343 |
|
---|
344 | /*
|
---|
345 | ** ===================================================================
|
---|
346 | ** x double integrator
|
---|
347 | **
|
---|
348 | ** ===================================================================
|
---|
349 | */
|
---|
350 | state[0].Pos.x =
|
---|
351 | (dT() * dT() / m->Value()) *
|
---|
352 | (vect.x -
|
---|
353 | f_air_lat->Value() * (state[-1].Pos.x - state[-2].Pos.x) / dT()) +
|
---|
354 | 2 * state[-1].Pos.x - state[-2].Pos.x;
|
---|
355 | state[0].Vel.x = (state[0].Pos.x - state[-1].Pos.x) / dT();
|
---|
356 |
|
---|
357 | /*
|
---|
358 | ** ===================================================================
|
---|
359 | ** y double integrator
|
---|
360 | **
|
---|
361 | ** ===================================================================
|
---|
362 | */
|
---|
363 | state[0].Pos.y =
|
---|
364 | (dT() * dT() / m->Value()) *
|
---|
365 | (vect.y -
|
---|
366 | f_air_lat->Value() * (state[-1].Pos.y - state[-2].Pos.y) / dT()) +
|
---|
367 | 2 * state[-1].Pos.y - state[-2].Pos.y;
|
---|
368 | state[0].Vel.y = (state[0].Pos.y - state[-1].Pos.y) / dT();
|
---|
369 |
|
---|
370 | /*
|
---|
371 | ** ===================================================================
|
---|
372 | ** z double integrator
|
---|
373 | **
|
---|
374 | ** ===================================================================
|
---|
375 | */
|
---|
376 | state[0].Pos.z =
|
---|
377 | (dT() * dT() / m->Value()) *
|
---|
378 | (vect.z +
|
---|
379 | f_air_vert->Value() * (state[-1].Pos.z - state[-2].Pos.z) / dT() +
|
---|
380 | m->Value() * G) +
|
---|
381 | 2 * state[-1].Pos.z - state[-2].Pos.z;
|
---|
382 | state[0].Vel.z = (state[0].Pos.z - state[-1].Pos.z) / dT();
|
---|
383 |
|
---|
384 | #ifndef GL
|
---|
385 | if (state[0].Pos.z < 0)
|
---|
386 | state[0].Pos.z = 0;
|
---|
387 | #endif
|
---|
388 | }
|
---|
389 |
|
---|
390 | } // end namespace simulator
|
---|
391 | } // end namespace flair
|
---|