source: flair-src/trunk/lib/FlairSimulator/src/X8.cpp@ 221

Last change on this file since 221 was 214, checked in by Sanahuja Guillaume, 7 years ago

matrix

File size: 15.7 KB
Line 
1// %flair:license{
2// This file is part of the Flair framework distributed under the
3// CECILL-C License, Version 1.0.
4// %flair:license}
5// created: 2014/04/03
6// filename: X8.cpp
7//
8// author: Majd Saied, Guillaume Sanahuja
9// Copyright Heudiasyc UMR UTC/CNRS 7253
10//
11// version: $Id: $
12//
13// purpose: classe definissant un X8
14//
15/*********************************************************************/
16
17#include "X8.h"
18#include <SimuBldc.h>
19#include <TabWidget.h>
20#include <Tab.h>
21#include <DoubleSpinBox.h>
22#include <SpinBox.h>
23#include <GroupBox.h>
24#include <math.h>
25#ifdef GL
26#include <ISceneManager.h>
27#include "Blade.h"
28#include "MeshSceneNode.h"
29#include "Gui.h"
30#include <Mutex.h>
31#endif
32
33#define K_MOT 0.4f // blade animation
34#define G (float)9.81 // gravity ( N/(m/s²) )
35
36#ifdef GL
37using namespace irr::video;
38using namespace irr::scene;
39using namespace irr::core;
40#endif
41using namespace flair::core;
42using namespace flair::gui;
43using namespace flair::actuator;
44
45namespace flair {
46namespace simulator {
47
48X8::X8(std::string name, uint32_t modelId): Model( name,modelId) {
49 Tab *setup_tab = new Tab(GetTabWidget(), "model");
50 m = new DoubleSpinBox(setup_tab->NewRow(), "mass (kg):", 0, 20, 0.1);
51 arm_length = new DoubleSpinBox(setup_tab->LastRowLastCol(), "arm length (m):",
52 0, 2, 0.1);
53 l_cg = new DoubleSpinBox(
54 setup_tab->LastRowLastCol(), "position G (m):", -0.5, 0.5,
55 0.02); // position du centre de gravité/centre de poussé
56 k_mot =
57 new DoubleSpinBox(setup_tab->NewRow(), "k_mot:", 0, 1, 0.001,
58 3); // vitesse rotation² (unité arbitraire) -> force (N)
59 c_mot = new DoubleSpinBox(
60 setup_tab->LastRowLastCol(), "c_mot:", 0, 1, 0.001,
61 3); // vitesse rotation moteur -> couple (N.m/unité arbitraire)
62 f_air_vert = new DoubleSpinBox(setup_tab->NewRow(), "f_air_vert:", 0, 10,
63 1); // frottements air depl. vertical, aussi
64 // utilisé pour les rotations ( N/(m/s) )
65 // (du aux helices en rotation)
66 f_air_lat =
67 new DoubleSpinBox(setup_tab->LastRowLastCol(), "f_air_lat:", 0, 10,
68 1); // frottements air deplacements lateraux ( N/(m/s) )
69 j_roll = new DoubleSpinBox(setup_tab->NewRow(), "j_roll:", 0, 1, 0.001,
70 5); // moment d'inertie d'un axe (N.m.s²/rad)
71 j_pitch =
72 new DoubleSpinBox(setup_tab->LastRowLastCol(), "j_pitch:", 0, 1, 0.001,
73 5); // moment d'inertie d'un axe (N.m.s²/rad)
74 j_yaw = new DoubleSpinBox(setup_tab->LastRowLastCol(), "j_yaw:", 0, 1, 0.001,
75 5); // moment d'inertie d'un axe (N.m.s²/rad)
76 j_r = new DoubleSpinBox(setup_tab->NewRow(), "j_r:", 0, 1,
77 0.001); // moment des helices (N.m.s²/rad)
78 sigma = new DoubleSpinBox(
79 setup_tab->LastRowLastCol(), "sigma:", 0, 1,
80 0.1); // coefficient de perte d efficacite aerodynamique (sans unite)
81 S = new DoubleSpinBox(
82 setup_tab->LastRowLastCol(), "S:", 1, 2,
83 0.1); // coefficient de forme des helices 1<S=1+Ss/Sprop<2 (sans unite)
84
85 motorTimeout = new SpinBox(setup_tab->NewRow(), "motor timeout:","ms", 0, 1000, 100,100);
86
87 motors = new SimuBldc(this, name, 8, modelId,0);
88
89 SetIsReady(true);
90}
91
92void X8::Draw() {
93#ifdef GL
94
95 // create unite (1m=100cm) UAV; scale will be adapted according to arm_length
96 // parameter
97 // note that the frame used is irrlicht one:
98 // left handed, North East Up
99
100 const IGeometryCreator *geo;
101 geo = getGui()->getSceneManager()->getGeometryCreator();
102
103 // cylinders are aligned with y axis
104 IMesh *red_arm = geo->createCylinderMesh(2.5, 100, 16, SColor(0, 255, 0, 0));
105 IMesh *black_arm = geo->createCylinderMesh(2.5, 100, 16, SColor(0, 128, 128, 128));
106 IMesh *motor = geo->createCylinderMesh(7.5, 15, 16); //,SColor(0, 128, 128, 128));
107 // geo->drop();
108
109 ITexture *texture = getGui()->getTexture("carbone.jpg");
110 MeshSceneNode *fl_arm = new MeshSceneNode(this, red_arm, vector3df(0, 0, 0),
111 vector3df(0, 0, -135));
112 MeshSceneNode *fr_arm = new MeshSceneNode(this, red_arm, vector3df(0, 0, 0),
113 vector3df(0, 0, -45));
114 MeshSceneNode *rl_arm = new MeshSceneNode(this, black_arm, vector3df(0, 0, 0),
115 vector3df(0, 0, 135), texture);
116 MeshSceneNode *rr_arm = new MeshSceneNode(this, black_arm, vector3df(0, 0, 0),
117 vector3df(0, 0, 45), texture);
118
119 texture = getGui()->getTexture("metal047.jpg");
120 MeshSceneNode *tfl_motor = new MeshSceneNode(this, motor, vector3df(70.71, -70.71, 2.5),
121 vector3df(90, 0, 0), texture);
122 MeshSceneNode *tfr_motor = new MeshSceneNode(this, motor, vector3df(70.71, 70.71, 2.5),
123 vector3df(90, 0, 0), texture);
124 MeshSceneNode *trl_motor = new MeshSceneNode(this, motor, vector3df(-70.71, -70.71, 2.5),
125 vector3df(90, 0, 0), texture);
126 MeshSceneNode *trr_motor = new MeshSceneNode(this, motor, vector3df(-70.71, 70.71, 2.5),
127 vector3df(90, 0, 0), texture);
128
129 MeshSceneNode *bfl_motor = new MeshSceneNode(this, motor, vector3df(70.71, -70.71, -17.5),
130 vector3df(90, 0, 0), texture);
131 MeshSceneNode *bfr_motor = new MeshSceneNode(this, motor, vector3df(70.71, 70.71, -17.5),
132 vector3df(90, 0, 0), texture);
133 MeshSceneNode *brl_motor = new MeshSceneNode(this, motor, vector3df(-70.71, -70.71, -17.5),
134 vector3df(90, 0, 0), texture);
135 MeshSceneNode *brr_motor = new MeshSceneNode(this, motor, vector3df(-70.71, 70.71, -17.5),
136 vector3df(90, 0, 0), texture);
137
138 tfl_blade = new Blade(this, vector3df(70.71, -70.71, 17.5));
139 tfr_blade = new Blade(this, vector3df(70.71, 70.71, 17.5), true);
140 trl_blade = new Blade(this, vector3df(-70.71, -70.71, 17.5), true);
141 trr_blade = new Blade(this, vector3df(-70.71, 70.71, 17.5));
142
143 bfl_blade = new Blade(this, vector3df(70.71, -70.71, -17.5));
144 bfr_blade = new Blade(this, vector3df(70.71, 70.71, -17.5), true);
145 brl_blade = new Blade(this, vector3df(-70.71, -70.71, -17.5), true);
146 brr_blade = new Blade(this, vector3df(-70.71, 70.71, -17.5));
147
148 motor_speed_mutex = new Mutex(this);
149 for (int i = 0; i < 8; i++)
150 motor_speed[i] = 0;
151 ExtraDraw();
152#endif
153}
154
155X8::~X8() {
156 // les objets irrlicht seront automatiquement detruits (moteurs, helices,
157 // pales) par parenté
158}
159
160#ifdef GL
161void X8::AnimateModel(void) {
162 motor_speed_mutex->GetMutex();
163 tfl_blade->SetRotationSpeed(K_MOT * motor_speed[0]);
164 tfr_blade->SetRotationSpeed(-K_MOT * motor_speed[1]);
165 trl_blade->SetRotationSpeed(-K_MOT * motor_speed[2]);
166 trr_blade->SetRotationSpeed(K_MOT * motor_speed[3]);
167
168 bfl_blade->SetRotationSpeed(-K_MOT * motor_speed[4]);
169 bfr_blade->SetRotationSpeed(K_MOT * motor_speed[5]);
170 brl_blade->SetRotationSpeed(K_MOT * motor_speed[6]);
171 brr_blade->SetRotationSpeed(-K_MOT * motor_speed[7]);
172 motor_speed_mutex->ReleaseMutex();
173
174 // adapt UAV size
175 if (arm_length->ValueChanged() == true) {
176 setScale(arm_length->Value());
177 }
178}
179
180size_t X8::dbtSize(void) const {
181 return 6 * sizeof(float) + 4 * sizeof(float); // 6ddl+4helices
182}
183
184void X8::WritedbtBuf(
185 char *dbtbuf) { /*
186 float *buf=(float*)dbtbuf;
187 vector3df vect=getPosition();
188 memcpy(buf,&vect.X,sizeof(float));
189 buf++;
190 memcpy(buf,&vect.Y,sizeof(float));
191 buf++;
192 memcpy(buf,&vect.Z,sizeof(float));
193 buf++;
194 vect=getRotation();
195 memcpy(buf,&vect.X,sizeof(float));
196 buf++;
197 memcpy(buf,&vect.Y,sizeof(float));
198 buf++;
199 memcpy(buf,&vect.Z,sizeof(float));
200 buf++;
201 memcpy(buf,&motors,sizeof(rtsimu_motors));*/
202}
203
204void X8::ReaddbtBuf(
205 char *dbtbuf) { /*
206 float *buf=(float*)dbtbuf;
207 vector3df vect;
208 memcpy(&vect.X,buf,sizeof(float));
209 buf++;
210 memcpy(&vect.Y,buf,sizeof(float));
211 buf++;
212 memcpy(&vect.Z,buf,sizeof(float));
213 buf++;
214 setPosition(vect);
215 memcpy(&vect.X,buf,sizeof(float));
216 buf++;
217 memcpy(&vect.Y,buf,sizeof(float));
218 buf++;
219 memcpy(&vect.Z,buf,sizeof(float));
220 buf++;
221 ((ISceneNode*)(this))->setRotation(vect);
222 memcpy(&motors,buf,sizeof(rtsimu_motors));
223 AnimateModele();*/
224}
225#endif // GL
226
227// states are computed on fixed frame NED
228// x north
229// y east
230// z down
231void X8::CalcModel(void) {
232 float tfl_speed, tfr_speed, trl_speed, trr_speed;
233 float bfl_speed, bfr_speed, brl_speed, brr_speed;
234 float u_roll, u_pitch, u_yaw, u_thrust;
235 float omega;
236 Time motorTime;
237#ifdef GL
238 motor_speed_mutex->GetMutex();
239#endif // GL
240 motors->GetSpeeds(motor_speed,&motorTime);
241 if((GetTime()-motorTime)/1000000>motorTimeout->Value()) {
242 for(int i=0;i<8;i++) {
243 if(motor_speed[i]!=0) {
244 //Printf("timout\n");
245 for(int i=0;i<8;i++) motor_speed[i]=0;
246 break;
247 }
248 }
249 }
250#ifdef GL
251 motor_speed_mutex->ReleaseMutex();
252#endif // GL
253 tfl_speed = motor_speed[0];
254 tfr_speed = motor_speed[1];
255 trl_speed = motor_speed[2];
256 trr_speed = motor_speed[3];
257 bfl_speed = motor_speed[4];
258 bfr_speed = motor_speed[5];
259 brl_speed = motor_speed[6];
260 brr_speed = motor_speed[7];
261
262 omega = tfl_speed + brl_speed + trr_speed + bfr_speed - bfl_speed -
263 trl_speed - brr_speed - tfr_speed;
264
265 /*
266 ** ===================================================================
267 ** u roll: roll torque
268 **
269 ** ===================================================================
270 */
271
272 u_roll = arm_length->Value() * k_mot->Value() *
273 (sigma->Value() * tfl_speed * tfl_speed + bfl_speed * bfl_speed +
274 sigma->Value() * trl_speed * trl_speed + brl_speed * brl_speed -
275 sigma->Value() * tfr_speed * tfr_speed - bfr_speed * bfr_speed -
276 sigma->Value() * trr_speed * trr_speed - brr_speed * brr_speed) *
277 sqrtf(2) / 2;
278
279 /// Classical Nonlinear model of a quadrotor ( This is the w_x angular speed
280 /// of the quadri in the body frame). It is a discrete integrator
281 // state[0].W.x=(dT()/j_roll->Value())*((j_yaw->Value()-j_pitch->Value())*state[-1].W.y*state[-1].W.z-j_r->Value()*state[-1].W.y*omega
282 // + u_roll) +state[-1].W.x;//Osamah
283 state[0].W.x =
284 (dT() / j_roll->Value()) *
285 ((j_pitch->Value() - j_yaw->Value()) * state[-1].W.y * state[-1].W.z -
286 j_r->Value() * state[-1].W.y * omega + u_roll) +
287 state[-1].W.x; // Majd
288
289 // state[0].W.x=(dT()/j_roll->Value())*(u_roll-m->Value()*G*l_cg->Value()*sinf(state[-2].W.x)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.x)+state[-1].W.x;
290
291 /*
292 ** ===================================================================
293 ** u pitch : pitch torque
294 **
295 ** ===================================================================
296 */
297 u_pitch = arm_length->Value() * k_mot->Value() *
298 (sigma->Value() * tfl_speed * tfl_speed + bfl_speed * bfl_speed +
299 sigma->Value() * tfr_speed * tfr_speed + bfr_speed * bfr_speed -
300 sigma->Value() * trl_speed * trl_speed - brl_speed * brl_speed -
301 sigma->Value() * trr_speed * trr_speed - brr_speed * brr_speed) *
302 sqrtf(2) / 2;
303
304 /// Classical Nonlinear model of a quadrotor ( This is the w_y angular speed
305 /// of the quadri in the body frame). It is a discrete integrator
306 // state[0].W.y=(dT()/j_pitch->Value())*((j_roll->Value()-j_yaw->Value())*state[-1].W.x*state[-1].W.z-j_r->Value()*state[-1].W.x*omega
307 // + u_pitch)+state[-1].W.y;//Osamah
308 state[0].W.y =
309 (dT() / j_pitch->Value()) *
310 ((j_yaw->Value() - j_roll->Value()) * state[-1].W.x * state[-1].W.z -
311 j_r->Value() * state[-1].W.x * omega + u_pitch) +
312 state[-1].W.y; // Majd
313
314 // state[0].W.y=(dT()/j_pitch->Value())*(u_pitch-m->Value()*G*l_cg->Value()*sinf(state[-2].W.y)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.y)+state[-1].W.y;
315
316 /*
317 ** ===================================================================
318 ** u yaw : yaw torque
319 **
320 ** ===================================================================
321 */
322 u_yaw = c_mot->Value() * (tfl_speed * tfl_speed - bfl_speed * bfl_speed +
323 trr_speed * trr_speed - brr_speed * brr_speed -
324 tfr_speed * tfr_speed + bfr_speed * bfr_speed -
325 trl_speed * trl_speed + brl_speed * brl_speed);
326
327 /// Classical Nonlinear model of a quadrotor ( This is the w_z angular speed
328 /// of the quadri in the body frame). It is a discrete integrator
329 // state[0].W.z=(dT()/j_yaw->Value())* u_yaw +state[-1].W.z;//Osamah
330 state[0].W.z =
331 (dT() / j_yaw->Value()) * ((j_roll->Value() - j_pitch->Value()) *
332 state[-1].W.x * state[-1].W.y +
333 u_yaw) +
334 state[-1].W.z; // Majd
335
336 // state[0].W.z=(dT()/j_yaw->Value())*(u_yaw-f_air_lat->Value()*state[-1].W.z)+state[-1].W.z;
337
338 // compute quaternion from W
339 // Quaternion derivative: dQ = 0.5*(Q*Qw)
340 Quaternion dQ = state[-1].Quat.GetDerivative(state[0].W);
341
342 // Quaternion integration
343 state[0].Quat = state[-1].Quat + dQ * dT();
344 state[0].Quat.Normalize();
345
346 // Calculation of the thrust from the reference speed of motors
347 u_thrust =
348 k_mot->Value() * S->Value() *
349 (sigma->Value() * tfl_speed * tfl_speed +
350 sigma->Value() * tfr_speed * tfr_speed +
351 sigma->Value() * trl_speed * trl_speed +
352 sigma->Value() * trr_speed * trr_speed + bfl_speed * bfl_speed +
353 bfr_speed * bfr_speed + brl_speed * brl_speed + brr_speed * brr_speed);
354 Vector3D<double> vect(0, 0, -u_thrust);
355 vect.Rotate(state[0].Quat);
356
357 /*
358 ** ===================================================================
359 ** x double integrator
360 **
361 ** ===================================================================
362 */
363 state[0].Pos.x =
364 (dT() * dT() / m->Value()) *
365 (vect.x -
366 f_air_lat->Value() * (state[-1].Pos.x - state[-2].Pos.x) / dT()) +
367 2 * state[-1].Pos.x - state[-2].Pos.x;
368 state[0].Vel.x = (state[0].Pos.x - state[-1].Pos.x) / dT();
369
370 /*
371 ** ===================================================================
372 ** y double integrator
373 **
374 ** ===================================================================
375 */
376 state[0].Pos.y =
377 (dT() * dT() / m->Value()) *
378 (vect.y -
379 f_air_lat->Value() * (state[-1].Pos.y - state[-2].Pos.y) / dT()) +
380 2 * state[-1].Pos.y - state[-2].Pos.y;
381 state[0].Vel.y = (state[0].Pos.y - state[-1].Pos.y) / dT();
382
383 /*
384 ** ===================================================================
385 ** z double integrator
386 **
387 ** ===================================================================
388 */
389 state[0].Pos.z =
390 (dT() * dT() / m->Value()) *
391 (vect.z +
392 f_air_vert->Value() * (state[-1].Pos.z - state[-2].Pos.z) / dT() +
393 m->Value() * G) +
394 2 * state[-1].Pos.z - state[-2].Pos.z;
395 state[0].Vel.z = (state[0].Pos.z - state[-1].Pos.z) / dT();
396
397#ifndef GL
398 if (state[0].Pos.z < 0)
399 state[0].Pos.z = 0;
400#endif
401}
402
403} // end namespace simulator
404} // end namespace flair
Note: See TracBrowser for help on using the repository browser.