source: flair-src/trunk/tools/Controller/Mavlink/src/include/common/mavlink_msg_hil_optical_flow.h @ 88

Last change on this file since 88 was 88, checked in by Sanahuja Guillaume, 5 years ago

m

File size: 25.4 KB
Line 
1// MESSAGE HIL_OPTICAL_FLOW PACKING
2
3#define MAVLINK_MSG_ID_HIL_OPTICAL_FLOW 114
4
5typedef struct MAVLINK_PACKED __mavlink_hil_optical_flow_t
6{
7 uint64_t time_usec; /*< Timestamp (microseconds, synced to UNIX time or since system boot)*/
8 uint32_t integration_time_us; /*< Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.*/
9 float integrated_x; /*< Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)*/
10 float integrated_y; /*< Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)*/
11 float integrated_xgyro; /*< RH rotation around X axis (rad)*/
12 float integrated_ygyro; /*< RH rotation around Y axis (rad)*/
13 float integrated_zgyro; /*< RH rotation around Z axis (rad)*/
14 uint32_t time_delta_distance_us; /*< Time in microseconds since the distance was sampled.*/
15 float distance; /*< Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.*/
16 int16_t temperature; /*< Temperature * 100 in centi-degrees Celsius*/
17 uint8_t sensor_id; /*< Sensor ID*/
18 uint8_t quality; /*< Optical flow quality / confidence. 0: no valid flow, 255: maximum quality*/
19} mavlink_hil_optical_flow_t;
20
21#define MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_LEN 44
22#define MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_MIN_LEN 44
23#define MAVLINK_MSG_ID_114_LEN 44
24#define MAVLINK_MSG_ID_114_MIN_LEN 44
25
26#define MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_CRC 237
27#define MAVLINK_MSG_ID_114_CRC 237
28
29
30
31#if MAVLINK_COMMAND_24BIT
32#define MAVLINK_MESSAGE_INFO_HIL_OPTICAL_FLOW { \
33        114, \
34        "HIL_OPTICAL_FLOW", \
35        12, \
36        {  { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_hil_optical_flow_t, time_usec) }, \
37         { "integration_time_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 8, offsetof(mavlink_hil_optical_flow_t, integration_time_us) }, \
38         { "integrated_x", NULL, MAVLINK_TYPE_FLOAT, 0, 12, offsetof(mavlink_hil_optical_flow_t, integrated_x) }, \
39         { "integrated_y", NULL, MAVLINK_TYPE_FLOAT, 0, 16, offsetof(mavlink_hil_optical_flow_t, integrated_y) }, \
40         { "integrated_xgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 20, offsetof(mavlink_hil_optical_flow_t, integrated_xgyro) }, \
41         { "integrated_ygyro", NULL, MAVLINK_TYPE_FLOAT, 0, 24, offsetof(mavlink_hil_optical_flow_t, integrated_ygyro) }, \
42         { "integrated_zgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 28, offsetof(mavlink_hil_optical_flow_t, integrated_zgyro) }, \
43         { "time_delta_distance_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 32, offsetof(mavlink_hil_optical_flow_t, time_delta_distance_us) }, \
44         { "distance", NULL, MAVLINK_TYPE_FLOAT, 0, 36, offsetof(mavlink_hil_optical_flow_t, distance) }, \
45         { "temperature", NULL, MAVLINK_TYPE_INT16_T, 0, 40, offsetof(mavlink_hil_optical_flow_t, temperature) }, \
46         { "sensor_id", NULL, MAVLINK_TYPE_UINT8_T, 0, 42, offsetof(mavlink_hil_optical_flow_t, sensor_id) }, \
47         { "quality", NULL, MAVLINK_TYPE_UINT8_T, 0, 43, offsetof(mavlink_hil_optical_flow_t, quality) }, \
48         } \
49}
50#else
51#define MAVLINK_MESSAGE_INFO_HIL_OPTICAL_FLOW { \
52        "HIL_OPTICAL_FLOW", \
53        12, \
54        {  { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_hil_optical_flow_t, time_usec) }, \
55         { "integration_time_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 8, offsetof(mavlink_hil_optical_flow_t, integration_time_us) }, \
56         { "integrated_x", NULL, MAVLINK_TYPE_FLOAT, 0, 12, offsetof(mavlink_hil_optical_flow_t, integrated_x) }, \
57         { "integrated_y", NULL, MAVLINK_TYPE_FLOAT, 0, 16, offsetof(mavlink_hil_optical_flow_t, integrated_y) }, \
58         { "integrated_xgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 20, offsetof(mavlink_hil_optical_flow_t, integrated_xgyro) }, \
59         { "integrated_ygyro", NULL, MAVLINK_TYPE_FLOAT, 0, 24, offsetof(mavlink_hil_optical_flow_t, integrated_ygyro) }, \
60         { "integrated_zgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 28, offsetof(mavlink_hil_optical_flow_t, integrated_zgyro) }, \
61         { "time_delta_distance_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 32, offsetof(mavlink_hil_optical_flow_t, time_delta_distance_us) }, \
62         { "distance", NULL, MAVLINK_TYPE_FLOAT, 0, 36, offsetof(mavlink_hil_optical_flow_t, distance) }, \
63         { "temperature", NULL, MAVLINK_TYPE_INT16_T, 0, 40, offsetof(mavlink_hil_optical_flow_t, temperature) }, \
64         { "sensor_id", NULL, MAVLINK_TYPE_UINT8_T, 0, 42, offsetof(mavlink_hil_optical_flow_t, sensor_id) }, \
65         { "quality", NULL, MAVLINK_TYPE_UINT8_T, 0, 43, offsetof(mavlink_hil_optical_flow_t, quality) }, \
66         } \
67}
68#endif
69
70/**
71 * @brief Pack a hil_optical_flow message
72 * @param system_id ID of this system
73 * @param component_id ID of this component (e.g. 200 for IMU)
74 * @param msg The MAVLink message to compress the data into
75 *
76 * @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot)
77 * @param sensor_id Sensor ID
78 * @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
79 * @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
80 * @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
81 * @param integrated_xgyro RH rotation around X axis (rad)
82 * @param integrated_ygyro RH rotation around Y axis (rad)
83 * @param integrated_zgyro RH rotation around Z axis (rad)
84 * @param temperature Temperature * 100 in centi-degrees Celsius
85 * @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
86 * @param time_delta_distance_us Time in microseconds since the distance was sampled.
87 * @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
88 * @return length of the message in bytes (excluding serial stream start sign)
89 */
90static inline uint16_t mavlink_msg_hil_optical_flow_pack(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg,
91                                                       uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance)
92{
93#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
94        char buf[MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_LEN];
95        _mav_put_uint64_t(buf, 0, time_usec);
96        _mav_put_uint32_t(buf, 8, integration_time_us);
97        _mav_put_float(buf, 12, integrated_x);
98        _mav_put_float(buf, 16, integrated_y);
99        _mav_put_float(buf, 20, integrated_xgyro);
100        _mav_put_float(buf, 24, integrated_ygyro);
101        _mav_put_float(buf, 28, integrated_zgyro);
102        _mav_put_uint32_t(buf, 32, time_delta_distance_us);
103        _mav_put_float(buf, 36, distance);
104        _mav_put_int16_t(buf, 40, temperature);
105        _mav_put_uint8_t(buf, 42, sensor_id);
106        _mav_put_uint8_t(buf, 43, quality);
107
108        memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_LEN);
109#else
110        mavlink_hil_optical_flow_t packet;
111        packet.time_usec = time_usec;
112        packet.integration_time_us = integration_time_us;
113        packet.integrated_x = integrated_x;
114        packet.integrated_y = integrated_y;
115        packet.integrated_xgyro = integrated_xgyro;
116        packet.integrated_ygyro = integrated_ygyro;
117        packet.integrated_zgyro = integrated_zgyro;
118        packet.time_delta_distance_us = time_delta_distance_us;
119        packet.distance = distance;
120        packet.temperature = temperature;
121        packet.sensor_id = sensor_id;
122        packet.quality = quality;
123
124        memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_LEN);
125#endif
126
127        msg->msgid = MAVLINK_MSG_ID_HIL_OPTICAL_FLOW;
128    return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_MIN_LEN, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_LEN, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_CRC);
129}
130
131/**
132 * @brief Pack a hil_optical_flow message on a channel
133 * @param system_id ID of this system
134 * @param component_id ID of this component (e.g. 200 for IMU)
135 * @param chan The MAVLink channel this message will be sent over
136 * @param msg The MAVLink message to compress the data into
137 * @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot)
138 * @param sensor_id Sensor ID
139 * @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
140 * @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
141 * @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
142 * @param integrated_xgyro RH rotation around X axis (rad)
143 * @param integrated_ygyro RH rotation around Y axis (rad)
144 * @param integrated_zgyro RH rotation around Z axis (rad)
145 * @param temperature Temperature * 100 in centi-degrees Celsius
146 * @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
147 * @param time_delta_distance_us Time in microseconds since the distance was sampled.
148 * @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
149 * @return length of the message in bytes (excluding serial stream start sign)
150 */
151static inline uint16_t mavlink_msg_hil_optical_flow_pack_chan(uint8_t system_id, uint8_t component_id, uint8_t chan,
152                                                           mavlink_message_t* msg,
153                                                           uint64_t time_usec,uint8_t sensor_id,uint32_t integration_time_us,float integrated_x,float integrated_y,float integrated_xgyro,float integrated_ygyro,float integrated_zgyro,int16_t temperature,uint8_t quality,uint32_t time_delta_distance_us,float distance)
154{
155#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
156        char buf[MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_LEN];
157        _mav_put_uint64_t(buf, 0, time_usec);
158        _mav_put_uint32_t(buf, 8, integration_time_us);
159        _mav_put_float(buf, 12, integrated_x);
160        _mav_put_float(buf, 16, integrated_y);
161        _mav_put_float(buf, 20, integrated_xgyro);
162        _mav_put_float(buf, 24, integrated_ygyro);
163        _mav_put_float(buf, 28, integrated_zgyro);
164        _mav_put_uint32_t(buf, 32, time_delta_distance_us);
165        _mav_put_float(buf, 36, distance);
166        _mav_put_int16_t(buf, 40, temperature);
167        _mav_put_uint8_t(buf, 42, sensor_id);
168        _mav_put_uint8_t(buf, 43, quality);
169
170        memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_LEN);
171#else
172        mavlink_hil_optical_flow_t packet;
173        packet.time_usec = time_usec;
174        packet.integration_time_us = integration_time_us;
175        packet.integrated_x = integrated_x;
176        packet.integrated_y = integrated_y;
177        packet.integrated_xgyro = integrated_xgyro;
178        packet.integrated_ygyro = integrated_ygyro;
179        packet.integrated_zgyro = integrated_zgyro;
180        packet.time_delta_distance_us = time_delta_distance_us;
181        packet.distance = distance;
182        packet.temperature = temperature;
183        packet.sensor_id = sensor_id;
184        packet.quality = quality;
185
186        memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_LEN);
187#endif
188
189        msg->msgid = MAVLINK_MSG_ID_HIL_OPTICAL_FLOW;
190    return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_MIN_LEN, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_LEN, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_CRC);
191}
192
193/**
194 * @brief Encode a hil_optical_flow struct
195 *
196 * @param system_id ID of this system
197 * @param component_id ID of this component (e.g. 200 for IMU)
198 * @param msg The MAVLink message to compress the data into
199 * @param hil_optical_flow C-struct to read the message contents from
200 */
201static inline uint16_t mavlink_msg_hil_optical_flow_encode(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, const mavlink_hil_optical_flow_t* hil_optical_flow)
202{
203        return mavlink_msg_hil_optical_flow_pack(system_id, component_id, msg, hil_optical_flow->time_usec, hil_optical_flow->sensor_id, hil_optical_flow->integration_time_us, hil_optical_flow->integrated_x, hil_optical_flow->integrated_y, hil_optical_flow->integrated_xgyro, hil_optical_flow->integrated_ygyro, hil_optical_flow->integrated_zgyro, hil_optical_flow->temperature, hil_optical_flow->quality, hil_optical_flow->time_delta_distance_us, hil_optical_flow->distance);
204}
205
206/**
207 * @brief Encode a hil_optical_flow struct on a channel
208 *
209 * @param system_id ID of this system
210 * @param component_id ID of this component (e.g. 200 for IMU)
211 * @param chan The MAVLink channel this message will be sent over
212 * @param msg The MAVLink message to compress the data into
213 * @param hil_optical_flow C-struct to read the message contents from
214 */
215static inline uint16_t mavlink_msg_hil_optical_flow_encode_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, const mavlink_hil_optical_flow_t* hil_optical_flow)
216{
217        return mavlink_msg_hil_optical_flow_pack_chan(system_id, component_id, chan, msg, hil_optical_flow->time_usec, hil_optical_flow->sensor_id, hil_optical_flow->integration_time_us, hil_optical_flow->integrated_x, hil_optical_flow->integrated_y, hil_optical_flow->integrated_xgyro, hil_optical_flow->integrated_ygyro, hil_optical_flow->integrated_zgyro, hil_optical_flow->temperature, hil_optical_flow->quality, hil_optical_flow->time_delta_distance_us, hil_optical_flow->distance);
218}
219
220/**
221 * @brief Send a hil_optical_flow message
222 * @param chan MAVLink channel to send the message
223 *
224 * @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot)
225 * @param sensor_id Sensor ID
226 * @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
227 * @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
228 * @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
229 * @param integrated_xgyro RH rotation around X axis (rad)
230 * @param integrated_ygyro RH rotation around Y axis (rad)
231 * @param integrated_zgyro RH rotation around Z axis (rad)
232 * @param temperature Temperature * 100 in centi-degrees Celsius
233 * @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
234 * @param time_delta_distance_us Time in microseconds since the distance was sampled.
235 * @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
236 */
237#ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS
238
239static inline void mavlink_msg_hil_optical_flow_send(mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance)
240{
241#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
242        char buf[MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_LEN];
243        _mav_put_uint64_t(buf, 0, time_usec);
244        _mav_put_uint32_t(buf, 8, integration_time_us);
245        _mav_put_float(buf, 12, integrated_x);
246        _mav_put_float(buf, 16, integrated_y);
247        _mav_put_float(buf, 20, integrated_xgyro);
248        _mav_put_float(buf, 24, integrated_ygyro);
249        _mav_put_float(buf, 28, integrated_zgyro);
250        _mav_put_uint32_t(buf, 32, time_delta_distance_us);
251        _mav_put_float(buf, 36, distance);
252        _mav_put_int16_t(buf, 40, temperature);
253        _mav_put_uint8_t(buf, 42, sensor_id);
254        _mav_put_uint8_t(buf, 43, quality);
255
256    _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW, buf, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_MIN_LEN, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_LEN, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_CRC);
257#else
258        mavlink_hil_optical_flow_t packet;
259        packet.time_usec = time_usec;
260        packet.integration_time_us = integration_time_us;
261        packet.integrated_x = integrated_x;
262        packet.integrated_y = integrated_y;
263        packet.integrated_xgyro = integrated_xgyro;
264        packet.integrated_ygyro = integrated_ygyro;
265        packet.integrated_zgyro = integrated_zgyro;
266        packet.time_delta_distance_us = time_delta_distance_us;
267        packet.distance = distance;
268        packet.temperature = temperature;
269        packet.sensor_id = sensor_id;
270        packet.quality = quality;
271
272    _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW, (const char *)&packet, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_MIN_LEN, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_LEN, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_CRC);
273#endif
274}
275
276/**
277 * @brief Send a hil_optical_flow message
278 * @param chan MAVLink channel to send the message
279 * @param struct The MAVLink struct to serialize
280 */
281static inline void mavlink_msg_hil_optical_flow_send_struct(mavlink_channel_t chan, const mavlink_hil_optical_flow_t* hil_optical_flow)
282{
283#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
284    mavlink_msg_hil_optical_flow_send(chan, hil_optical_flow->time_usec, hil_optical_flow->sensor_id, hil_optical_flow->integration_time_us, hil_optical_flow->integrated_x, hil_optical_flow->integrated_y, hil_optical_flow->integrated_xgyro, hil_optical_flow->integrated_ygyro, hil_optical_flow->integrated_zgyro, hil_optical_flow->temperature, hil_optical_flow->quality, hil_optical_flow->time_delta_distance_us, hil_optical_flow->distance);
285#else
286    _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW, (const char *)hil_optical_flow, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_MIN_LEN, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_LEN, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_CRC);
287#endif
288}
289
290#if MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_LEN <= MAVLINK_MAX_PAYLOAD_LEN
291/*
292  This varient of _send() can be used to save stack space by re-using
293  memory from the receive buffer.  The caller provides a
294  mavlink_message_t which is the size of a full mavlink message. This
295  is usually the receive buffer for the channel, and allows a reply to an
296  incoming message with minimum stack space usage.
297 */
298static inline void mavlink_msg_hil_optical_flow_send_buf(mavlink_message_t *msgbuf, mavlink_channel_t chan,  uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance)
299{
300#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
301        char *buf = (char *)msgbuf;
302        _mav_put_uint64_t(buf, 0, time_usec);
303        _mav_put_uint32_t(buf, 8, integration_time_us);
304        _mav_put_float(buf, 12, integrated_x);
305        _mav_put_float(buf, 16, integrated_y);
306        _mav_put_float(buf, 20, integrated_xgyro);
307        _mav_put_float(buf, 24, integrated_ygyro);
308        _mav_put_float(buf, 28, integrated_zgyro);
309        _mav_put_uint32_t(buf, 32, time_delta_distance_us);
310        _mav_put_float(buf, 36, distance);
311        _mav_put_int16_t(buf, 40, temperature);
312        _mav_put_uint8_t(buf, 42, sensor_id);
313        _mav_put_uint8_t(buf, 43, quality);
314
315    _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW, buf, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_MIN_LEN, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_LEN, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_CRC);
316#else
317        mavlink_hil_optical_flow_t *packet = (mavlink_hil_optical_flow_t *)msgbuf;
318        packet->time_usec = time_usec;
319        packet->integration_time_us = integration_time_us;
320        packet->integrated_x = integrated_x;
321        packet->integrated_y = integrated_y;
322        packet->integrated_xgyro = integrated_xgyro;
323        packet->integrated_ygyro = integrated_ygyro;
324        packet->integrated_zgyro = integrated_zgyro;
325        packet->time_delta_distance_us = time_delta_distance_us;
326        packet->distance = distance;
327        packet->temperature = temperature;
328        packet->sensor_id = sensor_id;
329        packet->quality = quality;
330
331    _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW, (const char *)packet, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_MIN_LEN, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_LEN, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_CRC);
332#endif
333}
334#endif
335
336#endif
337
338// MESSAGE HIL_OPTICAL_FLOW UNPACKING
339
340
341/**
342 * @brief Get field time_usec from hil_optical_flow message
343 *
344 * @return Timestamp (microseconds, synced to UNIX time or since system boot)
345 */
346static inline uint64_t mavlink_msg_hil_optical_flow_get_time_usec(const mavlink_message_t* msg)
347{
348        return _MAV_RETURN_uint64_t(msg,  0);
349}
350
351/**
352 * @brief Get field sensor_id from hil_optical_flow message
353 *
354 * @return Sensor ID
355 */
356static inline uint8_t mavlink_msg_hil_optical_flow_get_sensor_id(const mavlink_message_t* msg)
357{
358        return _MAV_RETURN_uint8_t(msg,  42);
359}
360
361/**
362 * @brief Get field integration_time_us from hil_optical_flow message
363 *
364 * @return Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
365 */
366static inline uint32_t mavlink_msg_hil_optical_flow_get_integration_time_us(const mavlink_message_t* msg)
367{
368        return _MAV_RETURN_uint32_t(msg,  8);
369}
370
371/**
372 * @brief Get field integrated_x from hil_optical_flow message
373 *
374 * @return Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
375 */
376static inline float mavlink_msg_hil_optical_flow_get_integrated_x(const mavlink_message_t* msg)
377{
378        return _MAV_RETURN_float(msg,  12);
379}
380
381/**
382 * @brief Get field integrated_y from hil_optical_flow message
383 *
384 * @return Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
385 */
386static inline float mavlink_msg_hil_optical_flow_get_integrated_y(const mavlink_message_t* msg)
387{
388        return _MAV_RETURN_float(msg,  16);
389}
390
391/**
392 * @brief Get field integrated_xgyro from hil_optical_flow message
393 *
394 * @return RH rotation around X axis (rad)
395 */
396static inline float mavlink_msg_hil_optical_flow_get_integrated_xgyro(const mavlink_message_t* msg)
397{
398        return _MAV_RETURN_float(msg,  20);
399}
400
401/**
402 * @brief Get field integrated_ygyro from hil_optical_flow message
403 *
404 * @return RH rotation around Y axis (rad)
405 */
406static inline float mavlink_msg_hil_optical_flow_get_integrated_ygyro(const mavlink_message_t* msg)
407{
408        return _MAV_RETURN_float(msg,  24);
409}
410
411/**
412 * @brief Get field integrated_zgyro from hil_optical_flow message
413 *
414 * @return RH rotation around Z axis (rad)
415 */
416static inline float mavlink_msg_hil_optical_flow_get_integrated_zgyro(const mavlink_message_t* msg)
417{
418        return _MAV_RETURN_float(msg,  28);
419}
420
421/**
422 * @brief Get field temperature from hil_optical_flow message
423 *
424 * @return Temperature * 100 in centi-degrees Celsius
425 */
426static inline int16_t mavlink_msg_hil_optical_flow_get_temperature(const mavlink_message_t* msg)
427{
428        return _MAV_RETURN_int16_t(msg,  40);
429}
430
431/**
432 * @brief Get field quality from hil_optical_flow message
433 *
434 * @return Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
435 */
436static inline uint8_t mavlink_msg_hil_optical_flow_get_quality(const mavlink_message_t* msg)
437{
438        return _MAV_RETURN_uint8_t(msg,  43);
439}
440
441/**
442 * @brief Get field time_delta_distance_us from hil_optical_flow message
443 *
444 * @return Time in microseconds since the distance was sampled.
445 */
446static inline uint32_t mavlink_msg_hil_optical_flow_get_time_delta_distance_us(const mavlink_message_t* msg)
447{
448        return _MAV_RETURN_uint32_t(msg,  32);
449}
450
451/**
452 * @brief Get field distance from hil_optical_flow message
453 *
454 * @return Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
455 */
456static inline float mavlink_msg_hil_optical_flow_get_distance(const mavlink_message_t* msg)
457{
458        return _MAV_RETURN_float(msg,  36);
459}
460
461/**
462 * @brief Decode a hil_optical_flow message into a struct
463 *
464 * @param msg The message to decode
465 * @param hil_optical_flow C-struct to decode the message contents into
466 */
467static inline void mavlink_msg_hil_optical_flow_decode(const mavlink_message_t* msg, mavlink_hil_optical_flow_t* hil_optical_flow)
468{
469#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
470        hil_optical_flow->time_usec = mavlink_msg_hil_optical_flow_get_time_usec(msg);
471        hil_optical_flow->integration_time_us = mavlink_msg_hil_optical_flow_get_integration_time_us(msg);
472        hil_optical_flow->integrated_x = mavlink_msg_hil_optical_flow_get_integrated_x(msg);
473        hil_optical_flow->integrated_y = mavlink_msg_hil_optical_flow_get_integrated_y(msg);
474        hil_optical_flow->integrated_xgyro = mavlink_msg_hil_optical_flow_get_integrated_xgyro(msg);
475        hil_optical_flow->integrated_ygyro = mavlink_msg_hil_optical_flow_get_integrated_ygyro(msg);
476        hil_optical_flow->integrated_zgyro = mavlink_msg_hil_optical_flow_get_integrated_zgyro(msg);
477        hil_optical_flow->time_delta_distance_us = mavlink_msg_hil_optical_flow_get_time_delta_distance_us(msg);
478        hil_optical_flow->distance = mavlink_msg_hil_optical_flow_get_distance(msg);
479        hil_optical_flow->temperature = mavlink_msg_hil_optical_flow_get_temperature(msg);
480        hil_optical_flow->sensor_id = mavlink_msg_hil_optical_flow_get_sensor_id(msg);
481        hil_optical_flow->quality = mavlink_msg_hil_optical_flow_get_quality(msg);
482#else
483        uint8_t len = msg->len < MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_LEN? msg->len : MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_LEN;
484        memset(hil_optical_flow, 0, MAVLINK_MSG_ID_HIL_OPTICAL_FLOW_LEN);
485        memcpy(hil_optical_flow, _MAV_PAYLOAD(msg), len);
486#endif
487}
Note: See TracBrowser for help on using the repository browser.