1 | // MESSAGE OPTICAL_FLOW_RAD PACKING
|
---|
2 |
|
---|
3 | #define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD 106
|
---|
4 |
|
---|
5 | typedef struct MAVLINK_PACKED __mavlink_optical_flow_rad_t
|
---|
6 | {
|
---|
7 | uint64_t time_usec; /*< Timestamp (microseconds, synced to UNIX time or since system boot)*/
|
---|
8 | uint32_t integration_time_us; /*< Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.*/
|
---|
9 | float integrated_x; /*< Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)*/
|
---|
10 | float integrated_y; /*< Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)*/
|
---|
11 | float integrated_xgyro; /*< RH rotation around X axis (rad)*/
|
---|
12 | float integrated_ygyro; /*< RH rotation around Y axis (rad)*/
|
---|
13 | float integrated_zgyro; /*< RH rotation around Z axis (rad)*/
|
---|
14 | uint32_t time_delta_distance_us; /*< Time in microseconds since the distance was sampled.*/
|
---|
15 | float distance; /*< Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.*/
|
---|
16 | int16_t temperature; /*< Temperature * 100 in centi-degrees Celsius*/
|
---|
17 | uint8_t sensor_id; /*< Sensor ID*/
|
---|
18 | uint8_t quality; /*< Optical flow quality / confidence. 0: no valid flow, 255: maximum quality*/
|
---|
19 | } mavlink_optical_flow_rad_t;
|
---|
20 |
|
---|
21 | #define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN 44
|
---|
22 | #define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN 44
|
---|
23 | #define MAVLINK_MSG_ID_106_LEN 44
|
---|
24 | #define MAVLINK_MSG_ID_106_MIN_LEN 44
|
---|
25 |
|
---|
26 | #define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC 138
|
---|
27 | #define MAVLINK_MSG_ID_106_CRC 138
|
---|
28 |
|
---|
29 |
|
---|
30 |
|
---|
31 | #if MAVLINK_COMMAND_24BIT
|
---|
32 | #define MAVLINK_MESSAGE_INFO_OPTICAL_FLOW_RAD { \
|
---|
33 | 106, \
|
---|
34 | "OPTICAL_FLOW_RAD", \
|
---|
35 | 12, \
|
---|
36 | { { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_optical_flow_rad_t, time_usec) }, \
|
---|
37 | { "integration_time_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 8, offsetof(mavlink_optical_flow_rad_t, integration_time_us) }, \
|
---|
38 | { "integrated_x", NULL, MAVLINK_TYPE_FLOAT, 0, 12, offsetof(mavlink_optical_flow_rad_t, integrated_x) }, \
|
---|
39 | { "integrated_y", NULL, MAVLINK_TYPE_FLOAT, 0, 16, offsetof(mavlink_optical_flow_rad_t, integrated_y) }, \
|
---|
40 | { "integrated_xgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 20, offsetof(mavlink_optical_flow_rad_t, integrated_xgyro) }, \
|
---|
41 | { "integrated_ygyro", NULL, MAVLINK_TYPE_FLOAT, 0, 24, offsetof(mavlink_optical_flow_rad_t, integrated_ygyro) }, \
|
---|
42 | { "integrated_zgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 28, offsetof(mavlink_optical_flow_rad_t, integrated_zgyro) }, \
|
---|
43 | { "time_delta_distance_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 32, offsetof(mavlink_optical_flow_rad_t, time_delta_distance_us) }, \
|
---|
44 | { "distance", NULL, MAVLINK_TYPE_FLOAT, 0, 36, offsetof(mavlink_optical_flow_rad_t, distance) }, \
|
---|
45 | { "temperature", NULL, MAVLINK_TYPE_INT16_T, 0, 40, offsetof(mavlink_optical_flow_rad_t, temperature) }, \
|
---|
46 | { "sensor_id", NULL, MAVLINK_TYPE_UINT8_T, 0, 42, offsetof(mavlink_optical_flow_rad_t, sensor_id) }, \
|
---|
47 | { "quality", NULL, MAVLINK_TYPE_UINT8_T, 0, 43, offsetof(mavlink_optical_flow_rad_t, quality) }, \
|
---|
48 | } \
|
---|
49 | }
|
---|
50 | #else
|
---|
51 | #define MAVLINK_MESSAGE_INFO_OPTICAL_FLOW_RAD { \
|
---|
52 | "OPTICAL_FLOW_RAD", \
|
---|
53 | 12, \
|
---|
54 | { { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_optical_flow_rad_t, time_usec) }, \
|
---|
55 | { "integration_time_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 8, offsetof(mavlink_optical_flow_rad_t, integration_time_us) }, \
|
---|
56 | { "integrated_x", NULL, MAVLINK_TYPE_FLOAT, 0, 12, offsetof(mavlink_optical_flow_rad_t, integrated_x) }, \
|
---|
57 | { "integrated_y", NULL, MAVLINK_TYPE_FLOAT, 0, 16, offsetof(mavlink_optical_flow_rad_t, integrated_y) }, \
|
---|
58 | { "integrated_xgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 20, offsetof(mavlink_optical_flow_rad_t, integrated_xgyro) }, \
|
---|
59 | { "integrated_ygyro", NULL, MAVLINK_TYPE_FLOAT, 0, 24, offsetof(mavlink_optical_flow_rad_t, integrated_ygyro) }, \
|
---|
60 | { "integrated_zgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 28, offsetof(mavlink_optical_flow_rad_t, integrated_zgyro) }, \
|
---|
61 | { "time_delta_distance_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 32, offsetof(mavlink_optical_flow_rad_t, time_delta_distance_us) }, \
|
---|
62 | { "distance", NULL, MAVLINK_TYPE_FLOAT, 0, 36, offsetof(mavlink_optical_flow_rad_t, distance) }, \
|
---|
63 | { "temperature", NULL, MAVLINK_TYPE_INT16_T, 0, 40, offsetof(mavlink_optical_flow_rad_t, temperature) }, \
|
---|
64 | { "sensor_id", NULL, MAVLINK_TYPE_UINT8_T, 0, 42, offsetof(mavlink_optical_flow_rad_t, sensor_id) }, \
|
---|
65 | { "quality", NULL, MAVLINK_TYPE_UINT8_T, 0, 43, offsetof(mavlink_optical_flow_rad_t, quality) }, \
|
---|
66 | } \
|
---|
67 | }
|
---|
68 | #endif
|
---|
69 |
|
---|
70 | /**
|
---|
71 | * @brief Pack a optical_flow_rad message
|
---|
72 | * @param system_id ID of this system
|
---|
73 | * @param component_id ID of this component (e.g. 200 for IMU)
|
---|
74 | * @param msg The MAVLink message to compress the data into
|
---|
75 | *
|
---|
76 | * @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot)
|
---|
77 | * @param sensor_id Sensor ID
|
---|
78 | * @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
|
---|
79 | * @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
|
---|
80 | * @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
|
---|
81 | * @param integrated_xgyro RH rotation around X axis (rad)
|
---|
82 | * @param integrated_ygyro RH rotation around Y axis (rad)
|
---|
83 | * @param integrated_zgyro RH rotation around Z axis (rad)
|
---|
84 | * @param temperature Temperature * 100 in centi-degrees Celsius
|
---|
85 | * @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
|
---|
86 | * @param time_delta_distance_us Time in microseconds since the distance was sampled.
|
---|
87 | * @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
|
---|
88 | * @return length of the message in bytes (excluding serial stream start sign)
|
---|
89 | */
|
---|
90 | static inline uint16_t mavlink_msg_optical_flow_rad_pack(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg,
|
---|
91 | uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance)
|
---|
92 | {
|
---|
93 | #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
|
---|
94 | char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN];
|
---|
95 | _mav_put_uint64_t(buf, 0, time_usec);
|
---|
96 | _mav_put_uint32_t(buf, 8, integration_time_us);
|
---|
97 | _mav_put_float(buf, 12, integrated_x);
|
---|
98 | _mav_put_float(buf, 16, integrated_y);
|
---|
99 | _mav_put_float(buf, 20, integrated_xgyro);
|
---|
100 | _mav_put_float(buf, 24, integrated_ygyro);
|
---|
101 | _mav_put_float(buf, 28, integrated_zgyro);
|
---|
102 | _mav_put_uint32_t(buf, 32, time_delta_distance_us);
|
---|
103 | _mav_put_float(buf, 36, distance);
|
---|
104 | _mav_put_int16_t(buf, 40, temperature);
|
---|
105 | _mav_put_uint8_t(buf, 42, sensor_id);
|
---|
106 | _mav_put_uint8_t(buf, 43, quality);
|
---|
107 |
|
---|
108 | memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
|
---|
109 | #else
|
---|
110 | mavlink_optical_flow_rad_t packet;
|
---|
111 | packet.time_usec = time_usec;
|
---|
112 | packet.integration_time_us = integration_time_us;
|
---|
113 | packet.integrated_x = integrated_x;
|
---|
114 | packet.integrated_y = integrated_y;
|
---|
115 | packet.integrated_xgyro = integrated_xgyro;
|
---|
116 | packet.integrated_ygyro = integrated_ygyro;
|
---|
117 | packet.integrated_zgyro = integrated_zgyro;
|
---|
118 | packet.time_delta_distance_us = time_delta_distance_us;
|
---|
119 | packet.distance = distance;
|
---|
120 | packet.temperature = temperature;
|
---|
121 | packet.sensor_id = sensor_id;
|
---|
122 | packet.quality = quality;
|
---|
123 |
|
---|
124 | memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
|
---|
125 | #endif
|
---|
126 |
|
---|
127 | msg->msgid = MAVLINK_MSG_ID_OPTICAL_FLOW_RAD;
|
---|
128 | return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
|
---|
129 | }
|
---|
130 |
|
---|
131 | /**
|
---|
132 | * @brief Pack a optical_flow_rad message on a channel
|
---|
133 | * @param system_id ID of this system
|
---|
134 | * @param component_id ID of this component (e.g. 200 for IMU)
|
---|
135 | * @param chan The MAVLink channel this message will be sent over
|
---|
136 | * @param msg The MAVLink message to compress the data into
|
---|
137 | * @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot)
|
---|
138 | * @param sensor_id Sensor ID
|
---|
139 | * @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
|
---|
140 | * @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
|
---|
141 | * @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
|
---|
142 | * @param integrated_xgyro RH rotation around X axis (rad)
|
---|
143 | * @param integrated_ygyro RH rotation around Y axis (rad)
|
---|
144 | * @param integrated_zgyro RH rotation around Z axis (rad)
|
---|
145 | * @param temperature Temperature * 100 in centi-degrees Celsius
|
---|
146 | * @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
|
---|
147 | * @param time_delta_distance_us Time in microseconds since the distance was sampled.
|
---|
148 | * @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
|
---|
149 | * @return length of the message in bytes (excluding serial stream start sign)
|
---|
150 | */
|
---|
151 | static inline uint16_t mavlink_msg_optical_flow_rad_pack_chan(uint8_t system_id, uint8_t component_id, uint8_t chan,
|
---|
152 | mavlink_message_t* msg,
|
---|
153 | uint64_t time_usec,uint8_t sensor_id,uint32_t integration_time_us,float integrated_x,float integrated_y,float integrated_xgyro,float integrated_ygyro,float integrated_zgyro,int16_t temperature,uint8_t quality,uint32_t time_delta_distance_us,float distance)
|
---|
154 | {
|
---|
155 | #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
|
---|
156 | char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN];
|
---|
157 | _mav_put_uint64_t(buf, 0, time_usec);
|
---|
158 | _mav_put_uint32_t(buf, 8, integration_time_us);
|
---|
159 | _mav_put_float(buf, 12, integrated_x);
|
---|
160 | _mav_put_float(buf, 16, integrated_y);
|
---|
161 | _mav_put_float(buf, 20, integrated_xgyro);
|
---|
162 | _mav_put_float(buf, 24, integrated_ygyro);
|
---|
163 | _mav_put_float(buf, 28, integrated_zgyro);
|
---|
164 | _mav_put_uint32_t(buf, 32, time_delta_distance_us);
|
---|
165 | _mav_put_float(buf, 36, distance);
|
---|
166 | _mav_put_int16_t(buf, 40, temperature);
|
---|
167 | _mav_put_uint8_t(buf, 42, sensor_id);
|
---|
168 | _mav_put_uint8_t(buf, 43, quality);
|
---|
169 |
|
---|
170 | memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
|
---|
171 | #else
|
---|
172 | mavlink_optical_flow_rad_t packet;
|
---|
173 | packet.time_usec = time_usec;
|
---|
174 | packet.integration_time_us = integration_time_us;
|
---|
175 | packet.integrated_x = integrated_x;
|
---|
176 | packet.integrated_y = integrated_y;
|
---|
177 | packet.integrated_xgyro = integrated_xgyro;
|
---|
178 | packet.integrated_ygyro = integrated_ygyro;
|
---|
179 | packet.integrated_zgyro = integrated_zgyro;
|
---|
180 | packet.time_delta_distance_us = time_delta_distance_us;
|
---|
181 | packet.distance = distance;
|
---|
182 | packet.temperature = temperature;
|
---|
183 | packet.sensor_id = sensor_id;
|
---|
184 | packet.quality = quality;
|
---|
185 |
|
---|
186 | memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
|
---|
187 | #endif
|
---|
188 |
|
---|
189 | msg->msgid = MAVLINK_MSG_ID_OPTICAL_FLOW_RAD;
|
---|
190 | return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
|
---|
191 | }
|
---|
192 |
|
---|
193 | /**
|
---|
194 | * @brief Encode a optical_flow_rad struct
|
---|
195 | *
|
---|
196 | * @param system_id ID of this system
|
---|
197 | * @param component_id ID of this component (e.g. 200 for IMU)
|
---|
198 | * @param msg The MAVLink message to compress the data into
|
---|
199 | * @param optical_flow_rad C-struct to read the message contents from
|
---|
200 | */
|
---|
201 | static inline uint16_t mavlink_msg_optical_flow_rad_encode(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, const mavlink_optical_flow_rad_t* optical_flow_rad)
|
---|
202 | {
|
---|
203 | return mavlink_msg_optical_flow_rad_pack(system_id, component_id, msg, optical_flow_rad->time_usec, optical_flow_rad->sensor_id, optical_flow_rad->integration_time_us, optical_flow_rad->integrated_x, optical_flow_rad->integrated_y, optical_flow_rad->integrated_xgyro, optical_flow_rad->integrated_ygyro, optical_flow_rad->integrated_zgyro, optical_flow_rad->temperature, optical_flow_rad->quality, optical_flow_rad->time_delta_distance_us, optical_flow_rad->distance);
|
---|
204 | }
|
---|
205 |
|
---|
206 | /**
|
---|
207 | * @brief Encode a optical_flow_rad struct on a channel
|
---|
208 | *
|
---|
209 | * @param system_id ID of this system
|
---|
210 | * @param component_id ID of this component (e.g. 200 for IMU)
|
---|
211 | * @param chan The MAVLink channel this message will be sent over
|
---|
212 | * @param msg The MAVLink message to compress the data into
|
---|
213 | * @param optical_flow_rad C-struct to read the message contents from
|
---|
214 | */
|
---|
215 | static inline uint16_t mavlink_msg_optical_flow_rad_encode_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, const mavlink_optical_flow_rad_t* optical_flow_rad)
|
---|
216 | {
|
---|
217 | return mavlink_msg_optical_flow_rad_pack_chan(system_id, component_id, chan, msg, optical_flow_rad->time_usec, optical_flow_rad->sensor_id, optical_flow_rad->integration_time_us, optical_flow_rad->integrated_x, optical_flow_rad->integrated_y, optical_flow_rad->integrated_xgyro, optical_flow_rad->integrated_ygyro, optical_flow_rad->integrated_zgyro, optical_flow_rad->temperature, optical_flow_rad->quality, optical_flow_rad->time_delta_distance_us, optical_flow_rad->distance);
|
---|
218 | }
|
---|
219 |
|
---|
220 | /**
|
---|
221 | * @brief Send a optical_flow_rad message
|
---|
222 | * @param chan MAVLink channel to send the message
|
---|
223 | *
|
---|
224 | * @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot)
|
---|
225 | * @param sensor_id Sensor ID
|
---|
226 | * @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
|
---|
227 | * @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
|
---|
228 | * @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
|
---|
229 | * @param integrated_xgyro RH rotation around X axis (rad)
|
---|
230 | * @param integrated_ygyro RH rotation around Y axis (rad)
|
---|
231 | * @param integrated_zgyro RH rotation around Z axis (rad)
|
---|
232 | * @param temperature Temperature * 100 in centi-degrees Celsius
|
---|
233 | * @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
|
---|
234 | * @param time_delta_distance_us Time in microseconds since the distance was sampled.
|
---|
235 | * @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
|
---|
236 | */
|
---|
237 | #ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS
|
---|
238 |
|
---|
239 | static inline void mavlink_msg_optical_flow_rad_send(mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance)
|
---|
240 | {
|
---|
241 | #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
|
---|
242 | char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN];
|
---|
243 | _mav_put_uint64_t(buf, 0, time_usec);
|
---|
244 | _mav_put_uint32_t(buf, 8, integration_time_us);
|
---|
245 | _mav_put_float(buf, 12, integrated_x);
|
---|
246 | _mav_put_float(buf, 16, integrated_y);
|
---|
247 | _mav_put_float(buf, 20, integrated_xgyro);
|
---|
248 | _mav_put_float(buf, 24, integrated_ygyro);
|
---|
249 | _mav_put_float(buf, 28, integrated_zgyro);
|
---|
250 | _mav_put_uint32_t(buf, 32, time_delta_distance_us);
|
---|
251 | _mav_put_float(buf, 36, distance);
|
---|
252 | _mav_put_int16_t(buf, 40, temperature);
|
---|
253 | _mav_put_uint8_t(buf, 42, sensor_id);
|
---|
254 | _mav_put_uint8_t(buf, 43, quality);
|
---|
255 |
|
---|
256 | _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
|
---|
257 | #else
|
---|
258 | mavlink_optical_flow_rad_t packet;
|
---|
259 | packet.time_usec = time_usec;
|
---|
260 | packet.integration_time_us = integration_time_us;
|
---|
261 | packet.integrated_x = integrated_x;
|
---|
262 | packet.integrated_y = integrated_y;
|
---|
263 | packet.integrated_xgyro = integrated_xgyro;
|
---|
264 | packet.integrated_ygyro = integrated_ygyro;
|
---|
265 | packet.integrated_zgyro = integrated_zgyro;
|
---|
266 | packet.time_delta_distance_us = time_delta_distance_us;
|
---|
267 | packet.distance = distance;
|
---|
268 | packet.temperature = temperature;
|
---|
269 | packet.sensor_id = sensor_id;
|
---|
270 | packet.quality = quality;
|
---|
271 |
|
---|
272 | _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)&packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
|
---|
273 | #endif
|
---|
274 | }
|
---|
275 |
|
---|
276 | /**
|
---|
277 | * @brief Send a optical_flow_rad message
|
---|
278 | * @param chan MAVLink channel to send the message
|
---|
279 | * @param struct The MAVLink struct to serialize
|
---|
280 | */
|
---|
281 | static inline void mavlink_msg_optical_flow_rad_send_struct(mavlink_channel_t chan, const mavlink_optical_flow_rad_t* optical_flow_rad)
|
---|
282 | {
|
---|
283 | #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
|
---|
284 | mavlink_msg_optical_flow_rad_send(chan, optical_flow_rad->time_usec, optical_flow_rad->sensor_id, optical_flow_rad->integration_time_us, optical_flow_rad->integrated_x, optical_flow_rad->integrated_y, optical_flow_rad->integrated_xgyro, optical_flow_rad->integrated_ygyro, optical_flow_rad->integrated_zgyro, optical_flow_rad->temperature, optical_flow_rad->quality, optical_flow_rad->time_delta_distance_us, optical_flow_rad->distance);
|
---|
285 | #else
|
---|
286 | _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)optical_flow_rad, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
|
---|
287 | #endif
|
---|
288 | }
|
---|
289 |
|
---|
290 | #if MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN <= MAVLINK_MAX_PAYLOAD_LEN
|
---|
291 | /*
|
---|
292 | This varient of _send() can be used to save stack space by re-using
|
---|
293 | memory from the receive buffer. The caller provides a
|
---|
294 | mavlink_message_t which is the size of a full mavlink message. This
|
---|
295 | is usually the receive buffer for the channel, and allows a reply to an
|
---|
296 | incoming message with minimum stack space usage.
|
---|
297 | */
|
---|
298 | static inline void mavlink_msg_optical_flow_rad_send_buf(mavlink_message_t *msgbuf, mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance)
|
---|
299 | {
|
---|
300 | #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
|
---|
301 | char *buf = (char *)msgbuf;
|
---|
302 | _mav_put_uint64_t(buf, 0, time_usec);
|
---|
303 | _mav_put_uint32_t(buf, 8, integration_time_us);
|
---|
304 | _mav_put_float(buf, 12, integrated_x);
|
---|
305 | _mav_put_float(buf, 16, integrated_y);
|
---|
306 | _mav_put_float(buf, 20, integrated_xgyro);
|
---|
307 | _mav_put_float(buf, 24, integrated_ygyro);
|
---|
308 | _mav_put_float(buf, 28, integrated_zgyro);
|
---|
309 | _mav_put_uint32_t(buf, 32, time_delta_distance_us);
|
---|
310 | _mav_put_float(buf, 36, distance);
|
---|
311 | _mav_put_int16_t(buf, 40, temperature);
|
---|
312 | _mav_put_uint8_t(buf, 42, sensor_id);
|
---|
313 | _mav_put_uint8_t(buf, 43, quality);
|
---|
314 |
|
---|
315 | _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
|
---|
316 | #else
|
---|
317 | mavlink_optical_flow_rad_t *packet = (mavlink_optical_flow_rad_t *)msgbuf;
|
---|
318 | packet->time_usec = time_usec;
|
---|
319 | packet->integration_time_us = integration_time_us;
|
---|
320 | packet->integrated_x = integrated_x;
|
---|
321 | packet->integrated_y = integrated_y;
|
---|
322 | packet->integrated_xgyro = integrated_xgyro;
|
---|
323 | packet->integrated_ygyro = integrated_ygyro;
|
---|
324 | packet->integrated_zgyro = integrated_zgyro;
|
---|
325 | packet->time_delta_distance_us = time_delta_distance_us;
|
---|
326 | packet->distance = distance;
|
---|
327 | packet->temperature = temperature;
|
---|
328 | packet->sensor_id = sensor_id;
|
---|
329 | packet->quality = quality;
|
---|
330 |
|
---|
331 | _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
|
---|
332 | #endif
|
---|
333 | }
|
---|
334 | #endif
|
---|
335 |
|
---|
336 | #endif
|
---|
337 |
|
---|
338 | // MESSAGE OPTICAL_FLOW_RAD UNPACKING
|
---|
339 |
|
---|
340 |
|
---|
341 | /**
|
---|
342 | * @brief Get field time_usec from optical_flow_rad message
|
---|
343 | *
|
---|
344 | * @return Timestamp (microseconds, synced to UNIX time or since system boot)
|
---|
345 | */
|
---|
346 | static inline uint64_t mavlink_msg_optical_flow_rad_get_time_usec(const mavlink_message_t* msg)
|
---|
347 | {
|
---|
348 | return _MAV_RETURN_uint64_t(msg, 0);
|
---|
349 | }
|
---|
350 |
|
---|
351 | /**
|
---|
352 | * @brief Get field sensor_id from optical_flow_rad message
|
---|
353 | *
|
---|
354 | * @return Sensor ID
|
---|
355 | */
|
---|
356 | static inline uint8_t mavlink_msg_optical_flow_rad_get_sensor_id(const mavlink_message_t* msg)
|
---|
357 | {
|
---|
358 | return _MAV_RETURN_uint8_t(msg, 42);
|
---|
359 | }
|
---|
360 |
|
---|
361 | /**
|
---|
362 | * @brief Get field integration_time_us from optical_flow_rad message
|
---|
363 | *
|
---|
364 | * @return Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
|
---|
365 | */
|
---|
366 | static inline uint32_t mavlink_msg_optical_flow_rad_get_integration_time_us(const mavlink_message_t* msg)
|
---|
367 | {
|
---|
368 | return _MAV_RETURN_uint32_t(msg, 8);
|
---|
369 | }
|
---|
370 |
|
---|
371 | /**
|
---|
372 | * @brief Get field integrated_x from optical_flow_rad message
|
---|
373 | *
|
---|
374 | * @return Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
|
---|
375 | */
|
---|
376 | static inline float mavlink_msg_optical_flow_rad_get_integrated_x(const mavlink_message_t* msg)
|
---|
377 | {
|
---|
378 | return _MAV_RETURN_float(msg, 12);
|
---|
379 | }
|
---|
380 |
|
---|
381 | /**
|
---|
382 | * @brief Get field integrated_y from optical_flow_rad message
|
---|
383 | *
|
---|
384 | * @return Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
|
---|
385 | */
|
---|
386 | static inline float mavlink_msg_optical_flow_rad_get_integrated_y(const mavlink_message_t* msg)
|
---|
387 | {
|
---|
388 | return _MAV_RETURN_float(msg, 16);
|
---|
389 | }
|
---|
390 |
|
---|
391 | /**
|
---|
392 | * @brief Get field integrated_xgyro from optical_flow_rad message
|
---|
393 | *
|
---|
394 | * @return RH rotation around X axis (rad)
|
---|
395 | */
|
---|
396 | static inline float mavlink_msg_optical_flow_rad_get_integrated_xgyro(const mavlink_message_t* msg)
|
---|
397 | {
|
---|
398 | return _MAV_RETURN_float(msg, 20);
|
---|
399 | }
|
---|
400 |
|
---|
401 | /**
|
---|
402 | * @brief Get field integrated_ygyro from optical_flow_rad message
|
---|
403 | *
|
---|
404 | * @return RH rotation around Y axis (rad)
|
---|
405 | */
|
---|
406 | static inline float mavlink_msg_optical_flow_rad_get_integrated_ygyro(const mavlink_message_t* msg)
|
---|
407 | {
|
---|
408 | return _MAV_RETURN_float(msg, 24);
|
---|
409 | }
|
---|
410 |
|
---|
411 | /**
|
---|
412 | * @brief Get field integrated_zgyro from optical_flow_rad message
|
---|
413 | *
|
---|
414 | * @return RH rotation around Z axis (rad)
|
---|
415 | */
|
---|
416 | static inline float mavlink_msg_optical_flow_rad_get_integrated_zgyro(const mavlink_message_t* msg)
|
---|
417 | {
|
---|
418 | return _MAV_RETURN_float(msg, 28);
|
---|
419 | }
|
---|
420 |
|
---|
421 | /**
|
---|
422 | * @brief Get field temperature from optical_flow_rad message
|
---|
423 | *
|
---|
424 | * @return Temperature * 100 in centi-degrees Celsius
|
---|
425 | */
|
---|
426 | static inline int16_t mavlink_msg_optical_flow_rad_get_temperature(const mavlink_message_t* msg)
|
---|
427 | {
|
---|
428 | return _MAV_RETURN_int16_t(msg, 40);
|
---|
429 | }
|
---|
430 |
|
---|
431 | /**
|
---|
432 | * @brief Get field quality from optical_flow_rad message
|
---|
433 | *
|
---|
434 | * @return Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
|
---|
435 | */
|
---|
436 | static inline uint8_t mavlink_msg_optical_flow_rad_get_quality(const mavlink_message_t* msg)
|
---|
437 | {
|
---|
438 | return _MAV_RETURN_uint8_t(msg, 43);
|
---|
439 | }
|
---|
440 |
|
---|
441 | /**
|
---|
442 | * @brief Get field time_delta_distance_us from optical_flow_rad message
|
---|
443 | *
|
---|
444 | * @return Time in microseconds since the distance was sampled.
|
---|
445 | */
|
---|
446 | static inline uint32_t mavlink_msg_optical_flow_rad_get_time_delta_distance_us(const mavlink_message_t* msg)
|
---|
447 | {
|
---|
448 | return _MAV_RETURN_uint32_t(msg, 32);
|
---|
449 | }
|
---|
450 |
|
---|
451 | /**
|
---|
452 | * @brief Get field distance from optical_flow_rad message
|
---|
453 | *
|
---|
454 | * @return Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
|
---|
455 | */
|
---|
456 | static inline float mavlink_msg_optical_flow_rad_get_distance(const mavlink_message_t* msg)
|
---|
457 | {
|
---|
458 | return _MAV_RETURN_float(msg, 36);
|
---|
459 | }
|
---|
460 |
|
---|
461 | /**
|
---|
462 | * @brief Decode a optical_flow_rad message into a struct
|
---|
463 | *
|
---|
464 | * @param msg The message to decode
|
---|
465 | * @param optical_flow_rad C-struct to decode the message contents into
|
---|
466 | */
|
---|
467 | static inline void mavlink_msg_optical_flow_rad_decode(const mavlink_message_t* msg, mavlink_optical_flow_rad_t* optical_flow_rad)
|
---|
468 | {
|
---|
469 | #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
|
---|
470 | optical_flow_rad->time_usec = mavlink_msg_optical_flow_rad_get_time_usec(msg);
|
---|
471 | optical_flow_rad->integration_time_us = mavlink_msg_optical_flow_rad_get_integration_time_us(msg);
|
---|
472 | optical_flow_rad->integrated_x = mavlink_msg_optical_flow_rad_get_integrated_x(msg);
|
---|
473 | optical_flow_rad->integrated_y = mavlink_msg_optical_flow_rad_get_integrated_y(msg);
|
---|
474 | optical_flow_rad->integrated_xgyro = mavlink_msg_optical_flow_rad_get_integrated_xgyro(msg);
|
---|
475 | optical_flow_rad->integrated_ygyro = mavlink_msg_optical_flow_rad_get_integrated_ygyro(msg);
|
---|
476 | optical_flow_rad->integrated_zgyro = mavlink_msg_optical_flow_rad_get_integrated_zgyro(msg);
|
---|
477 | optical_flow_rad->time_delta_distance_us = mavlink_msg_optical_flow_rad_get_time_delta_distance_us(msg);
|
---|
478 | optical_flow_rad->distance = mavlink_msg_optical_flow_rad_get_distance(msg);
|
---|
479 | optical_flow_rad->temperature = mavlink_msg_optical_flow_rad_get_temperature(msg);
|
---|
480 | optical_flow_rad->sensor_id = mavlink_msg_optical_flow_rad_get_sensor_id(msg);
|
---|
481 | optical_flow_rad->quality = mavlink_msg_optical_flow_rad_get_quality(msg);
|
---|
482 | #else
|
---|
483 | uint8_t len = msg->len < MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN? msg->len : MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN;
|
---|
484 | memset(optical_flow_rad, 0, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
|
---|
485 | memcpy(optical_flow_rad, _MAV_PAYLOAD(msg), len);
|
---|
486 | #endif
|
---|
487 | }
|
---|