1 | #ifndef _MAVLINK_CONVERSIONS_H_
|
---|
2 | #define _MAVLINK_CONVERSIONS_H_
|
---|
3 |
|
---|
4 | /* enable math defines on Windows */
|
---|
5 | #ifdef _MSC_VER
|
---|
6 | #ifndef _USE_MATH_DEFINES
|
---|
7 | #define _USE_MATH_DEFINES
|
---|
8 | #endif
|
---|
9 | #endif
|
---|
10 | #include <math.h>
|
---|
11 |
|
---|
12 | #ifndef M_PI_2
|
---|
13 | #define M_PI_2 ((float)asin(1))
|
---|
14 | #endif
|
---|
15 |
|
---|
16 | /**
|
---|
17 | * @file mavlink_conversions.h
|
---|
18 | *
|
---|
19 | * These conversion functions follow the NASA rotation standards definition file
|
---|
20 | * available online.
|
---|
21 | *
|
---|
22 | * Their intent is to lower the barrier for MAVLink adopters to use gimbal-lock free
|
---|
23 | * (both rotation matrices, sometimes called DCM, and quaternions are gimbal-lock free)
|
---|
24 | * rotation representations. Euler angles (roll, pitch, yaw) will be phased out of the
|
---|
25 | * protocol as widely as possible.
|
---|
26 | *
|
---|
27 | * @author James Goppert
|
---|
28 | * @author Thomas Gubler <thomasgubler@gmail.com>
|
---|
29 | */
|
---|
30 |
|
---|
31 |
|
---|
32 | /**
|
---|
33 | * Converts a quaternion to a rotation matrix
|
---|
34 | *
|
---|
35 | * @param quaternion a [w, x, y, z] ordered quaternion (null-rotation being 1 0 0 0)
|
---|
36 | * @param dcm a 3x3 rotation matrix
|
---|
37 | */
|
---|
38 | MAVLINK_HELPER void mavlink_quaternion_to_dcm(const float quaternion[4], float dcm[3][3])
|
---|
39 | {
|
---|
40 | double a = quaternion[0];
|
---|
41 | double b = quaternion[1];
|
---|
42 | double c = quaternion[2];
|
---|
43 | double d = quaternion[3];
|
---|
44 | double aSq = a * a;
|
---|
45 | double bSq = b * b;
|
---|
46 | double cSq = c * c;
|
---|
47 | double dSq = d * d;
|
---|
48 | dcm[0][0] = aSq + bSq - cSq - dSq;
|
---|
49 | dcm[0][1] = 2 * (b * c - a * d);
|
---|
50 | dcm[0][2] = 2 * (a * c + b * d);
|
---|
51 | dcm[1][0] = 2 * (b * c + a * d);
|
---|
52 | dcm[1][1] = aSq - bSq + cSq - dSq;
|
---|
53 | dcm[1][2] = 2 * (c * d - a * b);
|
---|
54 | dcm[2][0] = 2 * (b * d - a * c);
|
---|
55 | dcm[2][1] = 2 * (a * b + c * d);
|
---|
56 | dcm[2][2] = aSq - bSq - cSq + dSq;
|
---|
57 | }
|
---|
58 |
|
---|
59 |
|
---|
60 | /**
|
---|
61 | * Converts a rotation matrix to euler angles
|
---|
62 | *
|
---|
63 | * @param dcm a 3x3 rotation matrix
|
---|
64 | * @param roll the roll angle in radians
|
---|
65 | * @param pitch the pitch angle in radians
|
---|
66 | * @param yaw the yaw angle in radians
|
---|
67 | */
|
---|
68 | MAVLINK_HELPER void mavlink_dcm_to_euler(const float dcm[3][3], float* roll, float* pitch, float* yaw)
|
---|
69 | {
|
---|
70 | float phi, theta, psi;
|
---|
71 | theta = asin(-dcm[2][0]);
|
---|
72 |
|
---|
73 | if (fabsf(theta - (float)M_PI_2) < 1.0e-3f) {
|
---|
74 | phi = 0.0f;
|
---|
75 | psi = (atan2f(dcm[1][2] - dcm[0][1],
|
---|
76 | dcm[0][2] + dcm[1][1]) + phi);
|
---|
77 |
|
---|
78 | } else if (fabsf(theta + (float)M_PI_2) < 1.0e-3f) {
|
---|
79 | phi = 0.0f;
|
---|
80 | psi = atan2f(dcm[1][2] - dcm[0][1],
|
---|
81 | dcm[0][2] + dcm[1][1] - phi);
|
---|
82 |
|
---|
83 | } else {
|
---|
84 | phi = atan2f(dcm[2][1], dcm[2][2]);
|
---|
85 | psi = atan2f(dcm[1][0], dcm[0][0]);
|
---|
86 | }
|
---|
87 |
|
---|
88 | *roll = phi;
|
---|
89 | *pitch = theta;
|
---|
90 | *yaw = psi;
|
---|
91 | }
|
---|
92 |
|
---|
93 |
|
---|
94 | /**
|
---|
95 | * Converts a quaternion to euler angles
|
---|
96 | *
|
---|
97 | * @param quaternion a [w, x, y, z] ordered quaternion (null-rotation being 1 0 0 0)
|
---|
98 | * @param roll the roll angle in radians
|
---|
99 | * @param pitch the pitch angle in radians
|
---|
100 | * @param yaw the yaw angle in radians
|
---|
101 | */
|
---|
102 | MAVLINK_HELPER void mavlink_quaternion_to_euler(const float quaternion[4], float* roll, float* pitch, float* yaw)
|
---|
103 | {
|
---|
104 | float dcm[3][3];
|
---|
105 | mavlink_quaternion_to_dcm(quaternion, dcm);
|
---|
106 | mavlink_dcm_to_euler((const float(*)[3])dcm, roll, pitch, yaw);
|
---|
107 | }
|
---|
108 |
|
---|
109 |
|
---|
110 | /**
|
---|
111 | * Converts euler angles to a quaternion
|
---|
112 | *
|
---|
113 | * @param roll the roll angle in radians
|
---|
114 | * @param pitch the pitch angle in radians
|
---|
115 | * @param yaw the yaw angle in radians
|
---|
116 | * @param quaternion a [w, x, y, z] ordered quaternion (null-rotation being 1 0 0 0)
|
---|
117 | */
|
---|
118 | MAVLINK_HELPER void mavlink_euler_to_quaternion(float roll, float pitch, float yaw, float quaternion[4])
|
---|
119 | {
|
---|
120 | float cosPhi_2 = cosf(roll / 2);
|
---|
121 | float sinPhi_2 = sinf(roll / 2);
|
---|
122 | float cosTheta_2 = cosf(pitch / 2);
|
---|
123 | float sinTheta_2 = sinf(pitch / 2);
|
---|
124 | float cosPsi_2 = cosf(yaw / 2);
|
---|
125 | float sinPsi_2 = sinf(yaw / 2);
|
---|
126 | quaternion[0] = (cosPhi_2 * cosTheta_2 * cosPsi_2 +
|
---|
127 | sinPhi_2 * sinTheta_2 * sinPsi_2);
|
---|
128 | quaternion[1] = (sinPhi_2 * cosTheta_2 * cosPsi_2 -
|
---|
129 | cosPhi_2 * sinTheta_2 * sinPsi_2);
|
---|
130 | quaternion[2] = (cosPhi_2 * sinTheta_2 * cosPsi_2 +
|
---|
131 | sinPhi_2 * cosTheta_2 * sinPsi_2);
|
---|
132 | quaternion[3] = (cosPhi_2 * cosTheta_2 * sinPsi_2 -
|
---|
133 | sinPhi_2 * sinTheta_2 * cosPsi_2);
|
---|
134 | }
|
---|
135 |
|
---|
136 |
|
---|
137 | /**
|
---|
138 | * Converts a rotation matrix to a quaternion
|
---|
139 | * Reference:
|
---|
140 | * - Shoemake, Quaternions,
|
---|
141 | * http://www.cs.ucr.edu/~vbz/resources/quatut.pdf
|
---|
142 | *
|
---|
143 | * @param dcm a 3x3 rotation matrix
|
---|
144 | * @param quaternion a [w, x, y, z] ordered quaternion (null-rotation being 1 0 0 0)
|
---|
145 | */
|
---|
146 | MAVLINK_HELPER void mavlink_dcm_to_quaternion(const float dcm[3][3], float quaternion[4])
|
---|
147 | {
|
---|
148 | float tr = dcm[0][0] + dcm[1][1] + dcm[2][2];
|
---|
149 | if (tr > 0.0f) {
|
---|
150 | float s = sqrtf(tr + 1.0f);
|
---|
151 | quaternion[0] = s * 0.5f;
|
---|
152 | s = 0.5f / s;
|
---|
153 | quaternion[1] = (dcm[2][1] - dcm[1][2]) * s;
|
---|
154 | quaternion[2] = (dcm[0][2] - dcm[2][0]) * s;
|
---|
155 | quaternion[3] = (dcm[1][0] - dcm[0][1]) * s;
|
---|
156 | } else {
|
---|
157 | /* Find maximum diagonal element in dcm
|
---|
158 | * store index in dcm_i */
|
---|
159 | int dcm_i = 0;
|
---|
160 | int i;
|
---|
161 | for (i = 1; i < 3; i++) {
|
---|
162 | if (dcm[i][i] > dcm[dcm_i][dcm_i]) {
|
---|
163 | dcm_i = i;
|
---|
164 | }
|
---|
165 | }
|
---|
166 |
|
---|
167 | int dcm_j = (dcm_i + 1) % 3;
|
---|
168 | int dcm_k = (dcm_i + 2) % 3;
|
---|
169 |
|
---|
170 | float s = sqrtf((dcm[dcm_i][dcm_i] - dcm[dcm_j][dcm_j] -
|
---|
171 | dcm[dcm_k][dcm_k]) + 1.0f);
|
---|
172 | quaternion[dcm_i + 1] = s * 0.5f;
|
---|
173 | s = 0.5f / s;
|
---|
174 | quaternion[dcm_j + 1] = (dcm[dcm_i][dcm_j] + dcm[dcm_j][dcm_i]) * s;
|
---|
175 | quaternion[dcm_k + 1] = (dcm[dcm_k][dcm_i] + dcm[dcm_i][dcm_k]) * s;
|
---|
176 | quaternion[0] = (dcm[dcm_k][dcm_j] - dcm[dcm_j][dcm_k]) * s;
|
---|
177 | }
|
---|
178 | }
|
---|
179 |
|
---|
180 |
|
---|
181 | /**
|
---|
182 | * Converts euler angles to a rotation matrix
|
---|
183 | *
|
---|
184 | * @param roll the roll angle in radians
|
---|
185 | * @param pitch the pitch angle in radians
|
---|
186 | * @param yaw the yaw angle in radians
|
---|
187 | * @param dcm a 3x3 rotation matrix
|
---|
188 | */
|
---|
189 | MAVLINK_HELPER void mavlink_euler_to_dcm(float roll, float pitch, float yaw, float dcm[3][3])
|
---|
190 | {
|
---|
191 | float cosPhi = cosf(roll);
|
---|
192 | float sinPhi = sinf(roll);
|
---|
193 | float cosThe = cosf(pitch);
|
---|
194 | float sinThe = sinf(pitch);
|
---|
195 | float cosPsi = cosf(yaw);
|
---|
196 | float sinPsi = sinf(yaw);
|
---|
197 |
|
---|
198 | dcm[0][0] = cosThe * cosPsi;
|
---|
199 | dcm[0][1] = -cosPhi * sinPsi + sinPhi * sinThe * cosPsi;
|
---|
200 | dcm[0][2] = sinPhi * sinPsi + cosPhi * sinThe * cosPsi;
|
---|
201 |
|
---|
202 | dcm[1][0] = cosThe * sinPsi;
|
---|
203 | dcm[1][1] = cosPhi * cosPsi + sinPhi * sinThe * sinPsi;
|
---|
204 | dcm[1][2] = -sinPhi * cosPsi + cosPhi * sinThe * sinPsi;
|
---|
205 |
|
---|
206 | dcm[2][0] = -sinThe;
|
---|
207 | dcm[2][1] = sinPhi * cosThe;
|
---|
208 | dcm[2][2] = cosPhi * cosThe;
|
---|
209 | }
|
---|
210 |
|
---|
211 | #endif
|
---|