| 1 | // This file is part of Eigen, a lightweight C++ template library
|
|---|
| 2 | // for linear algebra.
|
|---|
| 3 | //
|
|---|
| 4 | // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
|
|---|
| 5 | // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|---|
| 6 | //
|
|---|
| 7 | // This Source Code Form is subject to the terms of the Mozilla
|
|---|
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
|---|
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|---|
| 10 | #include <iostream>
|
|---|
| 11 | #include <fstream>
|
|---|
| 12 | #include <iomanip>
|
|---|
| 13 |
|
|---|
| 14 | #include "main.h"
|
|---|
| 15 | #include <Eigen/LevenbergMarquardt>
|
|---|
| 16 |
|
|---|
| 17 | using namespace std;
|
|---|
| 18 | using namespace Eigen;
|
|---|
| 19 |
|
|---|
| 20 | template <typename Scalar>
|
|---|
| 21 | struct sparseGaussianTest : SparseFunctor<Scalar, int>
|
|---|
| 22 | {
|
|---|
| 23 | typedef Matrix<Scalar,Dynamic,1> VectorType;
|
|---|
| 24 | typedef SparseFunctor<Scalar,int> Base;
|
|---|
| 25 | typedef typename Base::JacobianType JacobianType;
|
|---|
| 26 | sparseGaussianTest(int inputs, int values) : SparseFunctor<Scalar,int>(inputs,values)
|
|---|
| 27 | { }
|
|---|
| 28 |
|
|---|
| 29 | VectorType model(const VectorType& uv, VectorType& x)
|
|---|
| 30 | {
|
|---|
| 31 | VectorType y; //Change this to use expression template
|
|---|
| 32 | int m = Base::values();
|
|---|
| 33 | int n = Base::inputs();
|
|---|
| 34 | eigen_assert(uv.size()%2 == 0);
|
|---|
| 35 | eigen_assert(uv.size() == n);
|
|---|
| 36 | eigen_assert(x.size() == m);
|
|---|
| 37 | y.setZero(m);
|
|---|
| 38 | int half = n/2;
|
|---|
| 39 | VectorBlock<const VectorType> u(uv, 0, half);
|
|---|
| 40 | VectorBlock<const VectorType> v(uv, half, half);
|
|---|
| 41 | Scalar coeff;
|
|---|
| 42 | for (int j = 0; j < m; j++)
|
|---|
| 43 | {
|
|---|
| 44 | for (int i = 0; i < half; i++)
|
|---|
| 45 | {
|
|---|
| 46 | coeff = (x(j)-i)/v(i);
|
|---|
| 47 | coeff *= coeff;
|
|---|
| 48 | if (coeff < 1. && coeff > 0.)
|
|---|
| 49 | y(j) += u(i)*std::pow((1-coeff), 2);
|
|---|
| 50 | }
|
|---|
| 51 | }
|
|---|
| 52 | return y;
|
|---|
| 53 | }
|
|---|
| 54 | void initPoints(VectorType& uv_ref, VectorType& x)
|
|---|
| 55 | {
|
|---|
| 56 | m_x = x;
|
|---|
| 57 | m_y = this->model(uv_ref,x);
|
|---|
| 58 | }
|
|---|
| 59 | int operator()(const VectorType& uv, VectorType& fvec)
|
|---|
| 60 | {
|
|---|
| 61 | int m = Base::values();
|
|---|
| 62 | int n = Base::inputs();
|
|---|
| 63 | eigen_assert(uv.size()%2 == 0);
|
|---|
| 64 | eigen_assert(uv.size() == n);
|
|---|
| 65 | int half = n/2;
|
|---|
| 66 | VectorBlock<const VectorType> u(uv, 0, half);
|
|---|
| 67 | VectorBlock<const VectorType> v(uv, half, half);
|
|---|
| 68 | fvec = m_y;
|
|---|
| 69 | Scalar coeff;
|
|---|
| 70 | for (int j = 0; j < m; j++)
|
|---|
| 71 | {
|
|---|
| 72 | for (int i = 0; i < half; i++)
|
|---|
| 73 | {
|
|---|
| 74 | coeff = (m_x(j)-i)/v(i);
|
|---|
| 75 | coeff *= coeff;
|
|---|
| 76 | if (coeff < 1. && coeff > 0.)
|
|---|
| 77 | fvec(j) -= u(i)*std::pow((1-coeff), 2);
|
|---|
| 78 | }
|
|---|
| 79 | }
|
|---|
| 80 | return 0;
|
|---|
| 81 | }
|
|---|
| 82 |
|
|---|
| 83 | int df(const VectorType& uv, JacobianType& fjac)
|
|---|
| 84 | {
|
|---|
| 85 | int m = Base::values();
|
|---|
| 86 | int n = Base::inputs();
|
|---|
| 87 | eigen_assert(n == uv.size());
|
|---|
| 88 | eigen_assert(fjac.rows() == m);
|
|---|
| 89 | eigen_assert(fjac.cols() == n);
|
|---|
| 90 | int half = n/2;
|
|---|
| 91 | VectorBlock<const VectorType> u(uv, 0, half);
|
|---|
| 92 | VectorBlock<const VectorType> v(uv, half, half);
|
|---|
| 93 | Scalar coeff;
|
|---|
| 94 |
|
|---|
| 95 | //Derivatives with respect to u
|
|---|
| 96 | for (int col = 0; col < half; col++)
|
|---|
| 97 | {
|
|---|
| 98 | for (int row = 0; row < m; row++)
|
|---|
| 99 | {
|
|---|
| 100 | coeff = (m_x(row)-col)/v(col);
|
|---|
| 101 | coeff = coeff*coeff;
|
|---|
| 102 | if(coeff < 1. && coeff > 0.)
|
|---|
| 103 | {
|
|---|
| 104 | fjac.coeffRef(row,col) = -(1-coeff)*(1-coeff);
|
|---|
| 105 | }
|
|---|
| 106 | }
|
|---|
| 107 | }
|
|---|
| 108 | //Derivatives with respect to v
|
|---|
| 109 | for (int col = 0; col < half; col++)
|
|---|
| 110 | {
|
|---|
| 111 | for (int row = 0; row < m; row++)
|
|---|
| 112 | {
|
|---|
| 113 | coeff = (m_x(row)-col)/v(col);
|
|---|
| 114 | coeff = coeff*coeff;
|
|---|
| 115 | if(coeff < 1. && coeff > 0.)
|
|---|
| 116 | {
|
|---|
| 117 | fjac.coeffRef(row,col+half) = -4 * (u(col)/v(col))*coeff*(1-coeff);
|
|---|
| 118 | }
|
|---|
| 119 | }
|
|---|
| 120 | }
|
|---|
| 121 | return 0;
|
|---|
| 122 | }
|
|---|
| 123 |
|
|---|
| 124 | VectorType m_x, m_y; //Data points
|
|---|
| 125 | };
|
|---|
| 126 |
|
|---|
| 127 |
|
|---|
| 128 | template<typename T>
|
|---|
| 129 | void test_sparseLM_T()
|
|---|
| 130 | {
|
|---|
| 131 | typedef Matrix<T,Dynamic,1> VectorType;
|
|---|
| 132 |
|
|---|
| 133 | int inputs = 10;
|
|---|
| 134 | int values = 2000;
|
|---|
| 135 | sparseGaussianTest<T> sparse_gaussian(inputs, values);
|
|---|
| 136 | VectorType uv(inputs),uv_ref(inputs);
|
|---|
| 137 | VectorType x(values);
|
|---|
| 138 | // Generate the reference solution
|
|---|
| 139 | uv_ref << -2, 1, 4 ,8, 6, 1.8, 1.2, 1.1, 1.9 , 3;
|
|---|
| 140 | //Generate the reference data points
|
|---|
| 141 | x.setRandom();
|
|---|
| 142 | x = 10*x;
|
|---|
| 143 | x.array() += 10;
|
|---|
| 144 | sparse_gaussian.initPoints(uv_ref, x);
|
|---|
| 145 |
|
|---|
| 146 |
|
|---|
| 147 | // Generate the initial parameters
|
|---|
| 148 | VectorBlock<VectorType> u(uv, 0, inputs/2);
|
|---|
| 149 | VectorBlock<VectorType> v(uv, inputs/2, inputs/2);
|
|---|
| 150 | v.setOnes();
|
|---|
| 151 | //Generate u or Solve for u from v
|
|---|
| 152 | u.setOnes();
|
|---|
| 153 |
|
|---|
| 154 | // Solve the optimization problem
|
|---|
| 155 | LevenbergMarquardt<sparseGaussianTest<T> > lm(sparse_gaussian);
|
|---|
| 156 | int info;
|
|---|
| 157 | // info = lm.minimize(uv);
|
|---|
| 158 |
|
|---|
| 159 | VERIFY_IS_EQUAL(info,1);
|
|---|
| 160 | // Do a step by step solution and save the residual
|
|---|
| 161 | int maxiter = 200;
|
|---|
| 162 | int iter = 0;
|
|---|
| 163 | MatrixXd Err(values, maxiter);
|
|---|
| 164 | MatrixXd Mod(values, maxiter);
|
|---|
| 165 | LevenbergMarquardtSpace::Status status;
|
|---|
| 166 | status = lm.minimizeInit(uv);
|
|---|
| 167 | if (status==LevenbergMarquardtSpace::ImproperInputParameters)
|
|---|
| 168 | return ;
|
|---|
| 169 |
|
|---|
| 170 | }
|
|---|
| 171 | void test_sparseLM()
|
|---|
| 172 | {
|
|---|
| 173 | CALL_SUBTEST_1(test_sparseLM_T<double>());
|
|---|
| 174 |
|
|---|
| 175 | // CALL_SUBTEST_2(test_sparseLM_T<std::complex<double>());
|
|---|
| 176 | }
|
|---|