[10] | 1 | // %flair:license{
|
---|
[15] | 2 | // This file is part of the Flair framework distributed under the
|
---|
| 3 | // CECILL-C License, Version 1.0.
|
---|
[10] | 4 | // %flair:license}
|
---|
[8] | 5 | // created: 2012/08/21
|
---|
| 6 | // filename: X4.cpp
|
---|
| 7 | //
|
---|
| 8 | // author: Osamah Saif, Guillaume Sanahuja
|
---|
| 9 | // Copyright Heudiasyc UMR UTC/CNRS 7253
|
---|
| 10 | //
|
---|
| 11 | // version: $Id: $
|
---|
| 12 | //
|
---|
| 13 | // purpose: classe definissant un x4
|
---|
| 14 | //
|
---|
| 15 | /*********************************************************************/
|
---|
| 16 |
|
---|
| 17 | #include "X4.h"
|
---|
| 18 | #include "Simulator.h"
|
---|
| 19 | #include <SimuBldc.h>
|
---|
| 20 | #include <TabWidget.h>
|
---|
| 21 | #include <Tab.h>
|
---|
| 22 | #include <DoubleSpinBox.h>
|
---|
| 23 | #include <GroupBox.h>
|
---|
| 24 | #include <math.h>
|
---|
| 25 | #ifdef GL
|
---|
| 26 | #include <ISceneManager.h>
|
---|
| 27 | #include "Blade.h"
|
---|
| 28 | #include "MeshSceneNode.h"
|
---|
| 29 | #include "Gui.h"
|
---|
| 30 | #include <Mutex.h>
|
---|
| 31 | #endif
|
---|
| 32 |
|
---|
[15] | 33 | #define K_MOT 0.4f // blade animation
|
---|
| 34 | #define G (float)9.81 // gravity ( N/(m/s²) )
|
---|
[8] | 35 |
|
---|
| 36 | #ifdef GL
|
---|
| 37 | using namespace irr::video;
|
---|
| 38 | using namespace irr::scene;
|
---|
| 39 | using namespace irr::core;
|
---|
| 40 | #endif
|
---|
| 41 | using namespace flair::core;
|
---|
| 42 | using namespace flair::gui;
|
---|
| 43 | using namespace flair::actuator;
|
---|
| 44 |
|
---|
[15] | 45 | namespace flair {
|
---|
| 46 | namespace simulator {
|
---|
[8] | 47 |
|
---|
[15] | 48 | X4::X4(const Simulator *parent, std::string name, int dev_id)
|
---|
| 49 | : Model(parent, name) {
|
---|
| 50 | Tab *setup_tab = new Tab(GetTabWidget(), "model");
|
---|
| 51 | m = new DoubleSpinBox(setup_tab->NewRow(), "mass (kg):", 0, 20, 0.1);
|
---|
| 52 | arm_length = new DoubleSpinBox(setup_tab->LastRowLastCol(), "arm length (m):",
|
---|
| 53 | 0, 2, 0.1);
|
---|
| 54 | // l_cg=new DoubleSpinBox(setup_tab,"position G
|
---|
| 55 | // (m):",0,2,-0.5,0.5,0.02);//position du centre de gravité/centre de poussé
|
---|
| 56 | k_mot =
|
---|
| 57 | new DoubleSpinBox(setup_tab->NewRow(), "k_mot:", 0, 1, 0.001,
|
---|
| 58 | 3); // vitesse rotation² (unité arbitraire) -> force (N)
|
---|
| 59 | c_mot = new DoubleSpinBox(
|
---|
| 60 | setup_tab->LastRowLastCol(), "c_mot:", 0, 1, 0.001,
|
---|
| 61 | 3); // vitesse rotation moteur -> couple (N.m/unité arbitraire)
|
---|
| 62 | f_air_vert = new DoubleSpinBox(setup_tab->NewRow(), "f_air_vert:", 0, 10,
|
---|
| 63 | 1); // frottements air depl. vertical, aussi
|
---|
| 64 | // utilisé pour les rotations ( N/(m/s) )
|
---|
| 65 | // (du aux helices en rotation)
|
---|
| 66 | f_air_lat =
|
---|
| 67 | new DoubleSpinBox(setup_tab->LastRowLastCol(), "f_air_lat:", 0, 10,
|
---|
| 68 | 1); // frottements air deplacements lateraux ( N/(m/s) )
|
---|
| 69 | j_roll = new DoubleSpinBox(setup_tab->NewRow(), "j_roll:", 0, 1, 0.001,
|
---|
| 70 | 5); // moment d'inertie d'un axe (N.m.s²/rad)
|
---|
| 71 | j_pitch =
|
---|
| 72 | new DoubleSpinBox(setup_tab->LastRowLastCol(), "j_pitch:", 0, 1, 0.001,
|
---|
| 73 | 5); // moment d'inertie d'un axe (N.m.s²/rad)
|
---|
| 74 | j_yaw = new DoubleSpinBox(setup_tab->LastRowLastCol(), "j_yaw:", 0, 1, 0.001,
|
---|
| 75 | 5); // moment d'inertie d'un axe (N.m.s²/rad)
|
---|
[8] | 76 |
|
---|
[15] | 77 | motors = new SimuBldc(this, name, 4, dev_id);
|
---|
[157] | 78 |
|
---|
| 79 | SetIsReady(true);
|
---|
[8] | 80 | }
|
---|
| 81 |
|
---|
[15] | 82 | X4::~X4() {
|
---|
| 83 | // les objets irrlicht seront automatiquement detruits (moteurs, helices,
|
---|
| 84 | // pales) par parenté
|
---|
[8] | 85 | }
|
---|
| 86 |
|
---|
| 87 | #ifdef GL
|
---|
| 88 |
|
---|
[15] | 89 | void X4::Draw(void) {
|
---|
| 90 | // create unite (1m=100cm) UAV; scale will be adapted according to arm_length
|
---|
| 91 | // parameter
|
---|
| 92 | // note that the frame used is irrlicht one:
|
---|
| 93 | // left handed, North East Up
|
---|
| 94 | const IGeometryCreator *geo;
|
---|
| 95 | geo = getGui()->getSceneManager()->getGeometryCreator();
|
---|
[8] | 96 |
|
---|
[15] | 97 | // cylinders are aligned with y axis
|
---|
| 98 | red_arm = geo->createCylinderMesh(2.5, 100, 16, SColor(0, 255, 0, 0));
|
---|
| 99 | black_arm = geo->createCylinderMesh(2.5, 100, 16, SColor(0, 128, 128, 128));
|
---|
| 100 | motor = geo->createCylinderMesh(7.5, 15, 16); //,SColor(0, 128, 128, 128));
|
---|
| 101 | // geo->drop();
|
---|
[8] | 102 |
|
---|
[15] | 103 | ITexture *texture = getGui()->getTexture("carbone.jpg");
|
---|
| 104 | fl_arm = new MeshSceneNode(this, red_arm, vector3df(0, 0, 0),
|
---|
| 105 | vector3df(0, 0, -135));
|
---|
| 106 | fr_arm = new MeshSceneNode(this, red_arm, vector3df(0, 0, 0),
|
---|
| 107 | vector3df(0, 0, -45));
|
---|
| 108 | rl_arm = new MeshSceneNode(this, black_arm, vector3df(0, 0, 0),
|
---|
| 109 | vector3df(0, 0, 135), texture);
|
---|
| 110 | rr_arm = new MeshSceneNode(this, black_arm, vector3df(0, 0, 0),
|
---|
| 111 | vector3df(0, 0, 45), texture);
|
---|
[8] | 112 |
|
---|
[15] | 113 | texture = getGui()->getTexture("metal047.jpg");
|
---|
| 114 | fl_motor = new MeshSceneNode(this, motor, vector3df(70.71, -70.71, 2.5),
|
---|
| 115 | vector3df(90, 0, 0), texture);
|
---|
| 116 | fr_motor = new MeshSceneNode(this, motor, vector3df(70.71, 70.71, 2.5),
|
---|
| 117 | vector3df(90, 0, 0), texture);
|
---|
| 118 | rl_motor = new MeshSceneNode(this, motor, vector3df(-70.71, -70.71, 2.5),
|
---|
| 119 | vector3df(90, 0, 0), texture);
|
---|
| 120 | rr_motor = new MeshSceneNode(this, motor, vector3df(-70.71, 70.71, 2.5),
|
---|
| 121 | vector3df(90, 0, 0), texture);
|
---|
[8] | 122 |
|
---|
[15] | 123 | fl_blade = new Blade(this, vector3df(70.71, -70.71, 17.5));
|
---|
| 124 | fr_blade = new Blade(this, vector3df(70.71, 70.71, 17.5), true);
|
---|
| 125 | rl_blade = new Blade(this, vector3df(-70.71, -70.71, 17.5), true);
|
---|
| 126 | rr_blade = new Blade(this, vector3df(-70.71, 70.71, 17.5));
|
---|
[8] | 127 |
|
---|
[15] | 128 | motor_speed_mutex = new Mutex(this);
|
---|
| 129 | for (int i = 0; i < 4; i++)
|
---|
| 130 | motor_speed[i] = 0;
|
---|
| 131 | ExtraDraw();
|
---|
[8] | 132 | }
|
---|
| 133 |
|
---|
[15] | 134 | void X4::AnimateModel(void) {
|
---|
| 135 | motor_speed_mutex->GetMutex();
|
---|
| 136 | fl_blade->SetRotationSpeed(K_MOT * motor_speed[0]);
|
---|
| 137 | fr_blade->SetRotationSpeed(-K_MOT * motor_speed[1]);
|
---|
| 138 | rl_blade->SetRotationSpeed(-K_MOT * motor_speed[2]);
|
---|
| 139 | rr_blade->SetRotationSpeed(K_MOT * motor_speed[3]);
|
---|
| 140 | motor_speed_mutex->ReleaseMutex();
|
---|
[8] | 141 |
|
---|
[15] | 142 | // adapt UAV size
|
---|
| 143 | if (arm_length->ValueChanged() == true) {
|
---|
| 144 | setScale(arm_length->Value());
|
---|
| 145 | }
|
---|
[8] | 146 | }
|
---|
| 147 |
|
---|
[15] | 148 | size_t X4::dbtSize(void) const {
|
---|
| 149 | return 6 * sizeof(float) + 4 * sizeof(float); // 6ddl+4helices
|
---|
[8] | 150 | }
|
---|
| 151 |
|
---|
[15] | 152 | void X4::WritedbtBuf(
|
---|
| 153 | char *dbtbuf) { /*
|
---|
| 154 | float *buf=(float*)dbtbuf;
|
---|
| 155 | vector3df vect=getPosition();
|
---|
| 156 | memcpy(buf,&vect.X,sizeof(float));
|
---|
| 157 | buf++;
|
---|
| 158 | memcpy(buf,&vect.Y,sizeof(float));
|
---|
| 159 | buf++;
|
---|
| 160 | memcpy(buf,&vect.Z,sizeof(float));
|
---|
| 161 | buf++;
|
---|
| 162 | vect=getRotation();
|
---|
| 163 | memcpy(buf,&vect.X,sizeof(float));
|
---|
| 164 | buf++;
|
---|
| 165 | memcpy(buf,&vect.Y,sizeof(float));
|
---|
| 166 | buf++;
|
---|
| 167 | memcpy(buf,&vect.Z,sizeof(float));
|
---|
| 168 | buf++;
|
---|
| 169 | memcpy(buf,&motors,sizeof(rtsimu_motors));*/
|
---|
[8] | 170 | }
|
---|
| 171 |
|
---|
[15] | 172 | void X4::ReaddbtBuf(
|
---|
| 173 | char *dbtbuf) { /*
|
---|
| 174 | float *buf=(float*)dbtbuf;
|
---|
| 175 | vector3df vect;
|
---|
| 176 | memcpy(&vect.X,buf,sizeof(float));
|
---|
| 177 | buf++;
|
---|
| 178 | memcpy(&vect.Y,buf,sizeof(float));
|
---|
| 179 | buf++;
|
---|
| 180 | memcpy(&vect.Z,buf,sizeof(float));
|
---|
| 181 | buf++;
|
---|
| 182 | setPosition(vect);
|
---|
| 183 | memcpy(&vect.X,buf,sizeof(float));
|
---|
| 184 | buf++;
|
---|
| 185 | memcpy(&vect.Y,buf,sizeof(float));
|
---|
| 186 | buf++;
|
---|
| 187 | memcpy(&vect.Z,buf,sizeof(float));
|
---|
| 188 | buf++;
|
---|
| 189 | ((ISceneNode*)(this))->setRotation(vect);
|
---|
| 190 | memcpy(&motors,buf,sizeof(rtsimu_motors));
|
---|
| 191 | AnimateModele();*/
|
---|
[8] | 192 | }
|
---|
[15] | 193 | #endif // GL
|
---|
[8] | 194 |
|
---|
[15] | 195 | // states are computed on fixed frame NED
|
---|
| 196 | // x north
|
---|
| 197 | // y east
|
---|
| 198 | // z down
|
---|
| 199 | void X4::CalcModel(void) {
|
---|
| 200 | float fl_speed, fr_speed, rl_speed, rr_speed;
|
---|
| 201 | float u_roll, u_pitch, u_yaw, u_thrust;
|
---|
[8] | 202 | #ifdef GL
|
---|
[15] | 203 | motor_speed_mutex->GetMutex();
|
---|
| 204 | #endif // GL
|
---|
| 205 | motors->GetSpeeds(motor_speed);
|
---|
[8] | 206 | #ifdef GL
|
---|
[15] | 207 | motor_speed_mutex->ReleaseMutex();
|
---|
| 208 | #endif // GL
|
---|
| 209 | fl_speed = motor_speed[0];
|
---|
| 210 | fr_speed = motor_speed[1];
|
---|
| 211 | rl_speed = motor_speed[2];
|
---|
| 212 | rr_speed = motor_speed[3];
|
---|
[8] | 213 |
|
---|
[15] | 214 | /*
|
---|
| 215 | ** ===================================================================
|
---|
| 216 | ** u roll: roll torque
|
---|
| 217 | **
|
---|
| 218 | ** ===================================================================
|
---|
| 219 | */
|
---|
| 220 | u_roll = arm_length->Value() * k_mot->Value() *
|
---|
| 221 | (fl_speed * fl_speed + rl_speed * rl_speed - fr_speed * fr_speed -
|
---|
| 222 | rr_speed * rr_speed) *
|
---|
| 223 | sqrtf(2) / 2;
|
---|
[8] | 224 |
|
---|
[15] | 225 | /// Classical Nonlinear model of a quadrotor ( This is the w_x angular speed
|
---|
| 226 | /// of the quadri in the body frame). It is a discrete integrator
|
---|
| 227 | state[0].W.x =
|
---|
| 228 | (dT() / j_roll->Value()) *
|
---|
| 229 | ((j_yaw->Value() - j_pitch->Value()) * state[-1].W.y * state[-1].W.z +
|
---|
| 230 | u_roll) +
|
---|
| 231 | state[-1].W.x;
|
---|
[8] | 232 |
|
---|
[15] | 233 | // u_roll=arm_length->Value()*k_mot->Value()*(fl_speed*fl_speed+rl_speed*rl_speed-fr_speed*fr_speed-rr_speed*rr_speed)*sqrtf(2)/2;
|
---|
| 234 | // state[0].W.x=(dT()/j_roll->Value())*(u_roll-m->Value()*G*l_cg->Value()*sinf(state[-2].W.x)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.x)+state[-1].W.x;
|
---|
[8] | 235 |
|
---|
[15] | 236 | /*
|
---|
| 237 | ** ===================================================================
|
---|
| 238 | ** u pitch : pitch torque
|
---|
| 239 | **
|
---|
| 240 | ** ===================================================================
|
---|
| 241 | */
|
---|
| 242 | u_pitch = arm_length->Value() * k_mot->Value() *
|
---|
| 243 | (fl_speed * fl_speed + fr_speed * fr_speed - rl_speed * rl_speed -
|
---|
| 244 | rr_speed * rr_speed) *
|
---|
| 245 | sqrtf(2) / 2;
|
---|
[8] | 246 |
|
---|
[15] | 247 | /// Classical Nonlinear model of a quadrotor ( This is the w_y angular speed
|
---|
| 248 | /// of the quadri in the body frame). It is a discrete integrator
|
---|
| 249 | state[0].W.y =
|
---|
| 250 | (dT() / j_pitch->Value()) *
|
---|
| 251 | ((j_roll->Value() - j_yaw->Value()) * state[-1].W.x * state[-1].W.z +
|
---|
| 252 | u_pitch) +
|
---|
| 253 | state[-1].W.y;
|
---|
[8] | 254 |
|
---|
[15] | 255 | // u_pitch=arm_length->Value()*k_mot->Value()*(fl_speed*fl_speed+fr_speed*fr_speed-rl_speed*rl_speed-rr_speed*rr_speed)*sqrtf(2)/2;
|
---|
| 256 | // state[0].W.y=(dT()/j_pitch->Value())*(u_pitch-m->Value()*G*l_cg->Value()*sinf(state[-2].W.y)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.y)+state[-1].W.y;
|
---|
[8] | 257 |
|
---|
[15] | 258 | /*
|
---|
| 259 | ** ===================================================================
|
---|
| 260 | ** u yaw : yaw torque
|
---|
| 261 | **
|
---|
| 262 | ** ===================================================================
|
---|
| 263 | */
|
---|
| 264 | u_yaw = c_mot->Value() * (fl_speed * fl_speed + rr_speed * rr_speed -
|
---|
| 265 | fr_speed * fr_speed - rl_speed * rl_speed);
|
---|
[8] | 266 |
|
---|
[15] | 267 | /// Classical Nonlinear model of a quadrotor ( This is the w_z angular speed
|
---|
| 268 | /// of the quadri in the body frame). It is a discrete integrator
|
---|
| 269 | state[0].W.z = (dT() / j_yaw->Value()) * u_yaw + state[-1].W.z;
|
---|
[8] | 270 |
|
---|
[15] | 271 | // u_yaw=c_mot->Value()*(fl_speed*fl_speed+rr_speed*rr_speed-fr_speed*fr_speed-rl_speed*rl_speed);
|
---|
| 272 | // state[0].W.z=(dT()/j_yaw->Value())*(u_yaw-f_air_lat->Value()*state[-1].W.z)+state[-1].W.z;
|
---|
[8] | 273 |
|
---|
[15] | 274 | // compute quaternion from W
|
---|
| 275 | // Quaternion derivative: dQ = 0.5*(Q*Qw)
|
---|
| 276 | Quaternion dQ = state[-1].Quat.GetDerivative(state[0].W);
|
---|
[8] | 277 |
|
---|
[15] | 278 | // Quaternion integration
|
---|
| 279 | state[0].Quat = state[-1].Quat + dQ * dT();
|
---|
| 280 | state[0].Quat.Normalize();
|
---|
[8] | 281 |
|
---|
[15] | 282 | // Calculation of the thrust from the reference speed of motors
|
---|
| 283 | u_thrust = k_mot->Value() * (fl_speed * fl_speed + fr_speed * fr_speed +
|
---|
| 284 | rl_speed * rl_speed + rr_speed * rr_speed);
|
---|
| 285 | Vector3D vect(0, 0, -u_thrust);
|
---|
| 286 | vect.Rotate(state[0].Quat);
|
---|
[8] | 287 |
|
---|
[15] | 288 | /*
|
---|
| 289 | ** ===================================================================
|
---|
| 290 | ** x double integrator
|
---|
| 291 | **
|
---|
| 292 | ** ===================================================================
|
---|
| 293 | */
|
---|
| 294 | state[0].Pos.x =
|
---|
| 295 | (dT() * dT() / m->Value()) *
|
---|
| 296 | (vect.x -
|
---|
| 297 | f_air_lat->Value() * (state[-1].Pos.x - state[-2].Pos.x) / dT()) +
|
---|
| 298 | 2 * state[-1].Pos.x - state[-2].Pos.x;
|
---|
| 299 | state[0].Vel.x = (state[0].Pos.x - state[-1].Pos.x) / dT();
|
---|
[8] | 300 |
|
---|
[15] | 301 | /*
|
---|
| 302 | ** ===================================================================
|
---|
| 303 | ** y double integrator
|
---|
| 304 | **
|
---|
| 305 | ** ===================================================================
|
---|
| 306 | */
|
---|
| 307 | state[0].Pos.y =
|
---|
| 308 | (dT() * dT() / m->Value()) *
|
---|
| 309 | (vect.y -
|
---|
| 310 | f_air_lat->Value() * (state[-1].Pos.y - state[-2].Pos.y) / dT()) +
|
---|
| 311 | 2 * state[-1].Pos.y - state[-2].Pos.y;
|
---|
| 312 | state[0].Vel.y = (state[0].Pos.y - state[-1].Pos.y) / dT();
|
---|
[8] | 313 |
|
---|
[15] | 314 | /*
|
---|
| 315 | ** ===================================================================
|
---|
| 316 | ** z double integrator
|
---|
| 317 | **
|
---|
| 318 | ** ===================================================================
|
---|
| 319 | */
|
---|
| 320 | state[0].Pos.z =
|
---|
| 321 | (dT() * dT() / m->Value()) *
|
---|
| 322 | (vect.z +
|
---|
| 323 | f_air_vert->Value() * (state[-1].Pos.z - state[-2].Pos.z) / dT() +
|
---|
| 324 | m->Value() * G) +
|
---|
| 325 | 2 * state[-1].Pos.z - state[-2].Pos.z;
|
---|
| 326 | state[0].Vel.z = (state[0].Pos.z - state[-1].Pos.z) / dT();
|
---|
[8] | 327 |
|
---|
| 328 | #ifndef GL
|
---|
[15] | 329 | if (state[0].Pos.z < 0)
|
---|
| 330 | state[0].Pos.z = 0;
|
---|
[8] | 331 | #endif
|
---|
| 332 | }
|
---|
| 333 |
|
---|
| 334 | } // end namespace simulator
|
---|
| 335 | } // end namespace flair
|
---|