1 | // %flair:license{
|
---|
2 | // This file is part of the Flair framework distributed under the
|
---|
3 | // CECILL-C License, Version 1.0.
|
---|
4 | // %flair:license}
|
---|
5 | // created: 2012/08/21
|
---|
6 | // filename: X4.cpp
|
---|
7 | //
|
---|
8 | // author: Osamah Saif, Guillaume Sanahuja
|
---|
9 | // Copyright Heudiasyc UMR UTC/CNRS 7253
|
---|
10 | //
|
---|
11 | // version: $Id: $
|
---|
12 | //
|
---|
13 | // purpose: classe definissant un x4
|
---|
14 | //
|
---|
15 | /*********************************************************************/
|
---|
16 |
|
---|
17 | #include "X4.h"
|
---|
18 | #include <SimuBldc.h>
|
---|
19 | #include <TabWidget.h>
|
---|
20 | #include <Tab.h>
|
---|
21 | #include <DoubleSpinBox.h>
|
---|
22 | #include <SpinBox.h>
|
---|
23 | #include <GroupBox.h>
|
---|
24 | #include <math.h>
|
---|
25 | #ifdef GL
|
---|
26 | #include <ISceneManager.h>
|
---|
27 | #include <IMeshManipulator.h>
|
---|
28 | #include "Blade.h"
|
---|
29 | #include "MeshSceneNode.h"
|
---|
30 | #include "Gui.h"
|
---|
31 | #include <Mutex.h>
|
---|
32 | #endif
|
---|
33 |
|
---|
34 | #define K_MOT 0.4f // blade animation
|
---|
35 | #define G (float)9.81 // gravity ( N/(m/s²) )
|
---|
36 |
|
---|
37 | #ifdef GL
|
---|
38 | using namespace irr::video;
|
---|
39 | using namespace irr::scene;
|
---|
40 | using namespace irr::core;
|
---|
41 | #endif
|
---|
42 | using namespace flair::core;
|
---|
43 | using namespace flair::gui;
|
---|
44 | using namespace flair::actuator;
|
---|
45 |
|
---|
46 | namespace flair {
|
---|
47 | namespace simulator {
|
---|
48 |
|
---|
49 | X4::X4(std::string name, uint32_t modelId)
|
---|
50 | : Model(name,modelId) {
|
---|
51 | Tab *setup_tab = new Tab(GetTabWidget(), "model");
|
---|
52 | m = new DoubleSpinBox(setup_tab->NewRow(), "mass (kg):", 0, 20, 0.1);
|
---|
53 | arm_length = new DoubleSpinBox(setup_tab->LastRowLastCol(), "arm length (m):",
|
---|
54 | 0, 2, 0.1);
|
---|
55 | // l_cg=new DoubleSpinBox(setup_tab,"position G
|
---|
56 | // (m):",0,2,-0.5,0.5,0.02);//position du centre de gravité/centre de poussé
|
---|
57 | k_mot =
|
---|
58 | new DoubleSpinBox(setup_tab->NewRow(), "k_mot:", 0, 1, 0.001,
|
---|
59 | 3); // vitesse rotation² (unité arbitraire) -> force (N)
|
---|
60 | c_mot = new DoubleSpinBox(
|
---|
61 | setup_tab->LastRowLastCol(), "c_mot:", 0, 1, 0.001,
|
---|
62 | 3); // vitesse rotation moteur -> couple (N.m/unité arbitraire)
|
---|
63 | f_air_vert = new DoubleSpinBox(setup_tab->NewRow(), "f_air_vert:", 0, 10,
|
---|
64 | 1); // frottements air depl. vertical, aussi
|
---|
65 | // utilisé pour les rotations ( N/(m/s) )
|
---|
66 | // (du aux helices en rotation)
|
---|
67 | f_air_lat =
|
---|
68 | new DoubleSpinBox(setup_tab->LastRowLastCol(), "f_air_lat:", 0, 10,
|
---|
69 | 1); // frottements air deplacements lateraux ( N/(m/s) )
|
---|
70 | j_roll = new DoubleSpinBox(setup_tab->NewRow(), "j_roll:", 0, 1, 0.001,
|
---|
71 | 5); // moment d'inertie d'un axe (N.m.s²/rad)
|
---|
72 | j_pitch =
|
---|
73 | new DoubleSpinBox(setup_tab->LastRowLastCol(), "j_pitch:", 0, 1, 0.001,
|
---|
74 | 5); // moment d'inertie d'un axe (N.m.s²/rad)
|
---|
75 | j_yaw = new DoubleSpinBox(setup_tab->LastRowLastCol(), "j_yaw:", 0, 1, 0.001,
|
---|
76 | 5); // moment d'inertie d'un axe (N.m.s²/rad)
|
---|
77 |
|
---|
78 | motorTimeout = new SpinBox(setup_tab->NewRow(), "motor timeout:","ms", 0, 1000, 100,100);
|
---|
79 |
|
---|
80 | Tab *visual_tab = new Tab(GetTabWidget(), "visual");
|
---|
81 | armColorR = new SpinBox(visual_tab->NewRow(), "arm color (R):", 0, 255, 1,255);
|
---|
82 | armColorG = new SpinBox(visual_tab->LastRowLastCol(), "arm color (G):", 0, 255, 1,0);
|
---|
83 | armColorB = new SpinBox(visual_tab->LastRowLastCol(), "arm color (B):", 0, 255, 1,0);
|
---|
84 |
|
---|
85 | motors = new SimuBldc(this, name, 4, modelId,0);
|
---|
86 |
|
---|
87 | SetIsReady(true);
|
---|
88 | }
|
---|
89 |
|
---|
90 | X4::~X4() {
|
---|
91 | // les objets irrlicht seront automatiquement detruits (moteurs, helices,
|
---|
92 | // pales) par parenté
|
---|
93 | }
|
---|
94 |
|
---|
95 | #ifdef GL
|
---|
96 |
|
---|
97 | void X4::Draw(void) {
|
---|
98 | // create unite (1m=100cm) UAV; scale will be adapted according to arm_length
|
---|
99 | // parameter
|
---|
100 | // note that the frame used is irrlicht one:
|
---|
101 | // left handed, North East Up
|
---|
102 | const IGeometryCreator *geo;
|
---|
103 | geo = getGui()->getSceneManager()->getGeometryCreator();
|
---|
104 |
|
---|
105 | // cylinders are aligned with y axis
|
---|
106 | colored_arm = geo->createCylinderMesh(2.5, 100, 16, SColor(0, armColorR->Value(), armColorG->Value(), armColorB->Value()));
|
---|
107 | IMesh *black_arm = geo->createCylinderMesh(2.5, 100, 16, SColor(0, 128, 128, 128));
|
---|
108 | IMesh *motor = geo->createCylinderMesh(7.5, 15, 16); //,SColor(0, 128, 128, 128));
|
---|
109 | // geo->drop();
|
---|
110 |
|
---|
111 | ITexture *texture = getGui()->getTexture("carbone.jpg");
|
---|
112 | MeshSceneNode *fl_arm = new MeshSceneNode(this, colored_arm, vector3df(0, 0, 0),
|
---|
113 | vector3df(0, 0, -135));
|
---|
114 | MeshSceneNode *fr_arm = new MeshSceneNode(this, colored_arm, vector3df(0, 0, 0),
|
---|
115 | vector3df(0, 0, -45));
|
---|
116 | MeshSceneNode *rl_arm = new MeshSceneNode(this, black_arm, vector3df(0, 0, 0),
|
---|
117 | vector3df(0, 0, 135), texture);
|
---|
118 | MeshSceneNode *rr_arm = new MeshSceneNode(this, black_arm, vector3df(0, 0, 0),
|
---|
119 | vector3df(0, 0, 45), texture);
|
---|
120 |
|
---|
121 | texture = getGui()->getTexture("metal047.jpg");
|
---|
122 | MeshSceneNode *fl_motor = new MeshSceneNode(this, motor, vector3df(70.71, -70.71, 2.5),
|
---|
123 | vector3df(90, 0, 0), texture);
|
---|
124 | MeshSceneNode *fr_motor = new MeshSceneNode(this, motor, vector3df(70.71, 70.71, 2.5),
|
---|
125 | vector3df(90, 0, 0), texture);
|
---|
126 | MeshSceneNode *rl_motor = new MeshSceneNode(this, motor, vector3df(-70.71, -70.71, 2.5),
|
---|
127 | vector3df(90, 0, 0), texture);
|
---|
128 | MeshSceneNode *rr_motor = new MeshSceneNode(this, motor, vector3df(-70.71, 70.71, 2.5),
|
---|
129 | vector3df(90, 0, 0), texture);
|
---|
130 |
|
---|
131 | fl_blade = new Blade(this, vector3df(70.71, -70.71, 17.5));
|
---|
132 | fr_blade = new Blade(this, vector3df(70.71, 70.71, 17.5), vector3df(0, 0, 0),true);
|
---|
133 | rl_blade = new Blade(this, vector3df(-70.71, -70.71, 17.5), vector3df(0, 0, 0),true);
|
---|
134 | rr_blade = new Blade(this, vector3df(-70.71, 70.71, 17.5));
|
---|
135 |
|
---|
136 | motor_speed_mutex = new Mutex(this);
|
---|
137 | for (int i = 0; i < 4; i++)
|
---|
138 | motor_speed[i] = 0;
|
---|
139 | ExtraDraw();
|
---|
140 | }
|
---|
141 |
|
---|
142 | void X4::AnimateModel(void) {
|
---|
143 | motor_speed_mutex->GetMutex();
|
---|
144 | fl_blade->SetRotationSpeed(K_MOT *vector3df(0, 0, motor_speed[0]));
|
---|
145 | fr_blade->SetRotationSpeed(-K_MOT *vector3df(0, 0, motor_speed[1]));
|
---|
146 | rl_blade->SetRotationSpeed(-K_MOT *vector3df(0, 0, motor_speed[2]));
|
---|
147 | rr_blade->SetRotationSpeed(K_MOT *vector3df(0, 0, motor_speed[3]));
|
---|
148 | motor_speed_mutex->ReleaseMutex();
|
---|
149 |
|
---|
150 | if (armColorR->ValueChanged() == true || armColorG->ValueChanged() == true || armColorB->ValueChanged() == true) {
|
---|
151 | getGui()->getSceneManager()->getMeshManipulator()->setVertexColors(colored_arm, SColor(0,armColorR->Value(), armColorG->Value(), armColorB->Value()));
|
---|
152 | }
|
---|
153 |
|
---|
154 | // adapt UAV size
|
---|
155 | if (arm_length->ValueChanged() == true) {
|
---|
156 | setScale(arm_length->Value());
|
---|
157 | }
|
---|
158 | }
|
---|
159 |
|
---|
160 | size_t X4::dbtSize(void) const {
|
---|
161 | return 6 * sizeof(float) + 4 * sizeof(float); // 6ddl+4helices
|
---|
162 | }
|
---|
163 |
|
---|
164 | void X4::WritedbtBuf(
|
---|
165 | char *dbtbuf) { /*
|
---|
166 | float *buf=(float*)dbtbuf;
|
---|
167 | vector3df vect=getPosition();
|
---|
168 | memcpy(buf,&vect.X,sizeof(float));
|
---|
169 | buf++;
|
---|
170 | memcpy(buf,&vect.Y,sizeof(float));
|
---|
171 | buf++;
|
---|
172 | memcpy(buf,&vect.Z,sizeof(float));
|
---|
173 | buf++;
|
---|
174 | vect=getRotation();
|
---|
175 | memcpy(buf,&vect.X,sizeof(float));
|
---|
176 | buf++;
|
---|
177 | memcpy(buf,&vect.Y,sizeof(float));
|
---|
178 | buf++;
|
---|
179 | memcpy(buf,&vect.Z,sizeof(float));
|
---|
180 | buf++;
|
---|
181 | memcpy(buf,&motors,sizeof(rtsimu_motors));*/
|
---|
182 | }
|
---|
183 |
|
---|
184 | void X4::ReaddbtBuf(
|
---|
185 | char *dbtbuf) { /*
|
---|
186 | float *buf=(float*)dbtbuf;
|
---|
187 | vector3df vect;
|
---|
188 | memcpy(&vect.X,buf,sizeof(float));
|
---|
189 | buf++;
|
---|
190 | memcpy(&vect.Y,buf,sizeof(float));
|
---|
191 | buf++;
|
---|
192 | memcpy(&vect.Z,buf,sizeof(float));
|
---|
193 | buf++;
|
---|
194 | setPosition(vect);
|
---|
195 | memcpy(&vect.X,buf,sizeof(float));
|
---|
196 | buf++;
|
---|
197 | memcpy(&vect.Y,buf,sizeof(float));
|
---|
198 | buf++;
|
---|
199 | memcpy(&vect.Z,buf,sizeof(float));
|
---|
200 | buf++;
|
---|
201 | ((ISceneNode*)(this))->setRotation(vect);
|
---|
202 | memcpy(&motors,buf,sizeof(rtsimu_motors));
|
---|
203 | AnimateModele();*/
|
---|
204 | }
|
---|
205 | #endif // GL
|
---|
206 |
|
---|
207 | // states are computed on fixed frame NED
|
---|
208 | // x north
|
---|
209 | // y east
|
---|
210 | // z down
|
---|
211 | void X4::CalcModel(void) {
|
---|
212 | float fl_speed, fr_speed, rl_speed, rr_speed;
|
---|
213 | float u_roll, u_pitch, u_yaw, u_thrust;
|
---|
214 | Time motorTime;
|
---|
215 | #ifdef GL
|
---|
216 | motor_speed_mutex->GetMutex();
|
---|
217 | #endif // GL
|
---|
218 | motors->GetSpeeds(motor_speed,&motorTime);
|
---|
219 | if((GetTime()-motorTime)/1000000>motorTimeout->Value()) {
|
---|
220 | for(int i=0;i<4;i++) {
|
---|
221 | if(motor_speed[i]!=0) {
|
---|
222 | //Printf("timout\n");
|
---|
223 | for(int i=0;i<4;i++) motor_speed[i]=0;
|
---|
224 | break;
|
---|
225 | }
|
---|
226 | }
|
---|
227 | }
|
---|
228 | #ifdef GL
|
---|
229 | motor_speed_mutex->ReleaseMutex();
|
---|
230 | #endif // GL
|
---|
231 |
|
---|
232 | fl_speed = motor_speed[0];
|
---|
233 | fr_speed = motor_speed[1];
|
---|
234 | rl_speed = motor_speed[2];
|
---|
235 | rr_speed = motor_speed[3];
|
---|
236 |
|
---|
237 | /*
|
---|
238 | ** ===================================================================
|
---|
239 | ** u roll: roll torque
|
---|
240 | **
|
---|
241 | ** ===================================================================
|
---|
242 | */
|
---|
243 | u_roll = arm_length->Value() * k_mot->Value() *
|
---|
244 | (fl_speed * fl_speed + rl_speed * rl_speed - fr_speed * fr_speed -
|
---|
245 | rr_speed * rr_speed) *
|
---|
246 | sqrtf(2) / 2;
|
---|
247 |
|
---|
248 | /// Classical Nonlinear model of a quadrotor ( This is the w_x angular speed
|
---|
249 | /// of the quadri in the body frame). It is a discrete integrator
|
---|
250 | state[0].W.x =
|
---|
251 | (dT() / j_roll->Value()) *
|
---|
252 | ((j_yaw->Value() - j_pitch->Value()) * state[-1].W.y * state[-1].W.z +
|
---|
253 | u_roll) +
|
---|
254 | state[-1].W.x;
|
---|
255 |
|
---|
256 | // u_roll=arm_length->Value()*k_mot->Value()*(fl_speed*fl_speed+rl_speed*rl_speed-fr_speed*fr_speed-rr_speed*rr_speed)*sqrtf(2)/2;
|
---|
257 | // state[0].W.x=(dT()/j_roll->Value())*(u_roll-m->Value()*G*l_cg->Value()*sinf(state[-2].W.x)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.x)+state[-1].W.x;
|
---|
258 |
|
---|
259 | /*
|
---|
260 | ** ===================================================================
|
---|
261 | ** u pitch : pitch torque
|
---|
262 | **
|
---|
263 | ** ===================================================================
|
---|
264 | */
|
---|
265 | u_pitch = arm_length->Value() * k_mot->Value() *
|
---|
266 | (fl_speed * fl_speed + fr_speed * fr_speed - rl_speed * rl_speed -
|
---|
267 | rr_speed * rr_speed) *
|
---|
268 | sqrtf(2) / 2;
|
---|
269 |
|
---|
270 | /// Classical Nonlinear model of a quadrotor ( This is the w_y angular speed
|
---|
271 | /// of the quadri in the body frame). It is a discrete integrator
|
---|
272 | state[0].W.y =
|
---|
273 | (dT() / j_pitch->Value()) *
|
---|
274 | ((j_roll->Value() - j_yaw->Value()) * state[-1].W.x * state[-1].W.z +
|
---|
275 | u_pitch) +
|
---|
276 | state[-1].W.y;
|
---|
277 |
|
---|
278 | // u_pitch=arm_length->Value()*k_mot->Value()*(fl_speed*fl_speed+fr_speed*fr_speed-rl_speed*rl_speed-rr_speed*rr_speed)*sqrtf(2)/2;
|
---|
279 | // state[0].W.y=(dT()/j_pitch->Value())*(u_pitch-m->Value()*G*l_cg->Value()*sinf(state[-2].W.y)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.y)+state[-1].W.y;
|
---|
280 |
|
---|
281 | /*
|
---|
282 | ** ===================================================================
|
---|
283 | ** u yaw : yaw torque
|
---|
284 | **
|
---|
285 | ** ===================================================================
|
---|
286 | */
|
---|
287 | u_yaw = c_mot->Value() * (fl_speed * fl_speed + rr_speed * rr_speed -
|
---|
288 | fr_speed * fr_speed - rl_speed * rl_speed);
|
---|
289 |
|
---|
290 | /// Classical Nonlinear model of a quadrotor ( This is the w_z angular speed
|
---|
291 | /// of the quadri in the body frame). It is a discrete integrator
|
---|
292 | state[0].W.z = (dT() / j_yaw->Value()) * u_yaw + state[-1].W.z;
|
---|
293 |
|
---|
294 | // u_yaw=c_mot->Value()*(fl_speed*fl_speed+rr_speed*rr_speed-fr_speed*fr_speed-rl_speed*rl_speed);
|
---|
295 | // state[0].W.z=(dT()/j_yaw->Value())*(u_yaw-f_air_lat->Value()*state[-1].W.z)+state[-1].W.z;
|
---|
296 |
|
---|
297 | // compute quaternion from W
|
---|
298 | // Quaternion derivative: dQ = 0.5*(Q*Qw)
|
---|
299 | Quaternion dQ = state[-1].Quat.GetDerivative(state[0].W);
|
---|
300 |
|
---|
301 | // Quaternion integration
|
---|
302 | state[0].Quat = state[-1].Quat + dQ * dT();
|
---|
303 | state[0].Quat.Normalize();
|
---|
304 |
|
---|
305 | // Calculation of the thrust from the reference speed of motors
|
---|
306 | u_thrust = k_mot->Value() * (fl_speed * fl_speed + fr_speed * fr_speed +
|
---|
307 | rl_speed * rl_speed + rr_speed * rr_speed);
|
---|
308 | Vector3D<double> vect(0, 0, -u_thrust);
|
---|
309 | vect.Rotate(state[0].Quat);
|
---|
310 |
|
---|
311 | /*
|
---|
312 | ** ===================================================================
|
---|
313 | ** x double integrator
|
---|
314 | **
|
---|
315 | ** ===================================================================
|
---|
316 | */
|
---|
317 |
|
---|
318 | state[0].Pos.x =
|
---|
319 | (dT() * dT() / m->Value()) *
|
---|
320 | (vect.x - f_air_lat->Value() * (state[-1].Pos.x - state[-2].Pos.x) / dT()) +
|
---|
321 | 2 * state[-1].Pos.x - state[-2].Pos.x;
|
---|
322 | state[0].Vel.x = (state[0].Pos.x - state[-1].Pos.x) / dT();
|
---|
323 |
|
---|
324 | /*
|
---|
325 | ** ===================================================================
|
---|
326 | ** y double integrator
|
---|
327 | **
|
---|
328 | ** ===================================================================
|
---|
329 | */
|
---|
330 | state[0].Pos.y =
|
---|
331 | (dT() * dT() / m->Value()) *
|
---|
332 | (vect.y -
|
---|
333 | f_air_lat->Value() * (state[-1].Pos.y - state[-2].Pos.y) / dT()) +
|
---|
334 | 2 * state[-1].Pos.y - state[-2].Pos.y;
|
---|
335 | state[0].Vel.y = (state[0].Pos.y - state[-1].Pos.y) / dT();
|
---|
336 |
|
---|
337 | /*
|
---|
338 | ** ===================================================================
|
---|
339 | ** z double integrator
|
---|
340 | **
|
---|
341 | ** ===================================================================
|
---|
342 | */
|
---|
343 | state[0].Pos.z =
|
---|
344 | (dT() * dT() / m->Value()) *
|
---|
345 | (vect.z +
|
---|
346 | f_air_vert->Value() * (state[-1].Pos.z - state[-2].Pos.z) / dT() +
|
---|
347 | m->Value() * G) +
|
---|
348 | 2 * state[-1].Pos.z - state[-2].Pos.z;
|
---|
349 | state[0].Vel.z = (state[0].Pos.z - state[-1].Pos.z) / dT();
|
---|
350 |
|
---|
351 | #ifndef GL
|
---|
352 | if (state[0].Pos.z < 0)
|
---|
353 | state[0].Pos.z = 0;
|
---|
354 | #endif
|
---|
355 | }
|
---|
356 |
|
---|
357 | } // end namespace simulator
|
---|
358 | } // end namespace flair
|
---|