[10] | 1 | // %flair:license{
|
---|
[15] | 2 | // This file is part of the Flair framework distributed under the
|
---|
| 3 | // CECILL-C License, Version 1.0.
|
---|
[10] | 4 | // %flair:license}
|
---|
[8] | 5 | // created: 2014/04/03
|
---|
| 6 | // filename: X8.cpp
|
---|
| 7 | //
|
---|
| 8 | // author: Majd Saied, Guillaume Sanahuja
|
---|
| 9 | // Copyright Heudiasyc UMR UTC/CNRS 7253
|
---|
| 10 | //
|
---|
| 11 | // version: $Id: $
|
---|
| 12 | //
|
---|
| 13 | // purpose: classe definissant un X8
|
---|
| 14 | //
|
---|
| 15 | /*********************************************************************/
|
---|
| 16 |
|
---|
| 17 | #include "X8.h"
|
---|
| 18 | #include <SimuBldc.h>
|
---|
| 19 | #include <TabWidget.h>
|
---|
| 20 | #include <Tab.h>
|
---|
| 21 | #include <DoubleSpinBox.h>
|
---|
[214] | 22 | #include <SpinBox.h>
|
---|
[8] | 23 | #include <GroupBox.h>
|
---|
| 24 | #include <math.h>
|
---|
| 25 | #ifdef GL
|
---|
| 26 | #include <ISceneManager.h>
|
---|
[370] | 27 | #include <IMeshManipulator.h>
|
---|
[8] | 28 | #include "Blade.h"
|
---|
| 29 | #include "MeshSceneNode.h"
|
---|
| 30 | #include "Gui.h"
|
---|
| 31 | #include <Mutex.h>
|
---|
| 32 | #endif
|
---|
| 33 |
|
---|
[15] | 34 | #define K_MOT 0.4f // blade animation
|
---|
| 35 | #define G (float)9.81 // gravity ( N/(m/s²) )
|
---|
[8] | 36 |
|
---|
| 37 | #ifdef GL
|
---|
| 38 | using namespace irr::video;
|
---|
| 39 | using namespace irr::scene;
|
---|
| 40 | using namespace irr::core;
|
---|
| 41 | #endif
|
---|
| 42 | using namespace flair::core;
|
---|
| 43 | using namespace flair::gui;
|
---|
| 44 | using namespace flair::actuator;
|
---|
| 45 |
|
---|
[15] | 46 | namespace flair {
|
---|
| 47 | namespace simulator {
|
---|
[8] | 48 |
|
---|
[158] | 49 | X8::X8(std::string name, uint32_t modelId): Model( name,modelId) {
|
---|
[15] | 50 | Tab *setup_tab = new Tab(GetTabWidget(), "model");
|
---|
| 51 | m = new DoubleSpinBox(setup_tab->NewRow(), "mass (kg):", 0, 20, 0.1);
|
---|
| 52 | arm_length = new DoubleSpinBox(setup_tab->LastRowLastCol(), "arm length (m):",
|
---|
| 53 | 0, 2, 0.1);
|
---|
| 54 | l_cg = new DoubleSpinBox(
|
---|
| 55 | setup_tab->LastRowLastCol(), "position G (m):", -0.5, 0.5,
|
---|
| 56 | 0.02); // position du centre de gravité/centre de poussé
|
---|
| 57 | k_mot =
|
---|
| 58 | new DoubleSpinBox(setup_tab->NewRow(), "k_mot:", 0, 1, 0.001,
|
---|
| 59 | 3); // vitesse rotation² (unité arbitraire) -> force (N)
|
---|
| 60 | c_mot = new DoubleSpinBox(
|
---|
| 61 | setup_tab->LastRowLastCol(), "c_mot:", 0, 1, 0.001,
|
---|
| 62 | 3); // vitesse rotation moteur -> couple (N.m/unité arbitraire)
|
---|
| 63 | f_air_vert = new DoubleSpinBox(setup_tab->NewRow(), "f_air_vert:", 0, 10,
|
---|
| 64 | 1); // frottements air depl. vertical, aussi
|
---|
| 65 | // utilisé pour les rotations ( N/(m/s) )
|
---|
| 66 | // (du aux helices en rotation)
|
---|
| 67 | f_air_lat =
|
---|
| 68 | new DoubleSpinBox(setup_tab->LastRowLastCol(), "f_air_lat:", 0, 10,
|
---|
| 69 | 1); // frottements air deplacements lateraux ( N/(m/s) )
|
---|
| 70 | j_roll = new DoubleSpinBox(setup_tab->NewRow(), "j_roll:", 0, 1, 0.001,
|
---|
| 71 | 5); // moment d'inertie d'un axe (N.m.s²/rad)
|
---|
| 72 | j_pitch =
|
---|
| 73 | new DoubleSpinBox(setup_tab->LastRowLastCol(), "j_pitch:", 0, 1, 0.001,
|
---|
| 74 | 5); // moment d'inertie d'un axe (N.m.s²/rad)
|
---|
| 75 | j_yaw = new DoubleSpinBox(setup_tab->LastRowLastCol(), "j_yaw:", 0, 1, 0.001,
|
---|
| 76 | 5); // moment d'inertie d'un axe (N.m.s²/rad)
|
---|
| 77 | j_r = new DoubleSpinBox(setup_tab->NewRow(), "j_r:", 0, 1,
|
---|
| 78 | 0.001); // moment des helices (N.m.s²/rad)
|
---|
| 79 | sigma = new DoubleSpinBox(
|
---|
| 80 | setup_tab->LastRowLastCol(), "sigma:", 0, 1,
|
---|
| 81 | 0.1); // coefficient de perte d efficacite aerodynamique (sans unite)
|
---|
| 82 | S = new DoubleSpinBox(
|
---|
| 83 | setup_tab->LastRowLastCol(), "S:", 1, 2,
|
---|
| 84 | 0.1); // coefficient de forme des helices 1<S=1+Ss/Sprop<2 (sans unite)
|
---|
[214] | 85 |
|
---|
| 86 | motorTimeout = new SpinBox(setup_tab->NewRow(), "motor timeout:","ms", 0, 1000, 100,100);
|
---|
[8] | 87 |
|
---|
[370] | 88 | Tab *visual_tab = new Tab(GetTabWidget(), "visual");
|
---|
| 89 | armColorR = new SpinBox(visual_tab->NewRow(), "arm color (R):", 0, 255, 1,255);
|
---|
| 90 | armColorG = new SpinBox(visual_tab->LastRowLastCol(), "arm color (G):", 0, 255, 1,0);
|
---|
| 91 | armColorB = new SpinBox(visual_tab->LastRowLastCol(), "arm color (B):", 0, 255, 1,0);
|
---|
| 92 |
|
---|
[158] | 93 | motors = new SimuBldc(this, name, 8, modelId,0);
|
---|
[157] | 94 |
|
---|
| 95 | SetIsReady(true);
|
---|
[8] | 96 | }
|
---|
| 97 |
|
---|
[15] | 98 | void X8::Draw() {
|
---|
[8] | 99 | #ifdef GL
|
---|
| 100 |
|
---|
[15] | 101 | // create unite (1m=100cm) UAV; scale will be adapted according to arm_length
|
---|
| 102 | // parameter
|
---|
| 103 | // note that the frame used is irrlicht one:
|
---|
| 104 | // left handed, North East Up
|
---|
[8] | 105 |
|
---|
[15] | 106 | const IGeometryCreator *geo;
|
---|
| 107 | geo = getGui()->getSceneManager()->getGeometryCreator();
|
---|
[8] | 108 |
|
---|
[15] | 109 | // cylinders are aligned with y axis
|
---|
[370] | 110 | colored_arm = geo->createCylinderMesh(2.5, 100, 16, SColor(0, armColorR->Value(), armColorG->Value(), armColorB->Value()));
|
---|
[158] | 111 | IMesh *black_arm = geo->createCylinderMesh(2.5, 100, 16, SColor(0, 128, 128, 128));
|
---|
| 112 | IMesh *motor = geo->createCylinderMesh(7.5, 15, 16); //,SColor(0, 128, 128, 128));
|
---|
[15] | 113 | // geo->drop();
|
---|
[8] | 114 |
|
---|
[15] | 115 | ITexture *texture = getGui()->getTexture("carbone.jpg");
|
---|
[370] | 116 | MeshSceneNode *fl_arm = new MeshSceneNode(this, colored_arm, vector3df(0, 0, 0),
|
---|
[15] | 117 | vector3df(0, 0, -135));
|
---|
[370] | 118 | MeshSceneNode *fr_arm = new MeshSceneNode(this, colored_arm, vector3df(0, 0, 0),
|
---|
[15] | 119 | vector3df(0, 0, -45));
|
---|
[158] | 120 | MeshSceneNode *rl_arm = new MeshSceneNode(this, black_arm, vector3df(0, 0, 0),
|
---|
[15] | 121 | vector3df(0, 0, 135), texture);
|
---|
[158] | 122 | MeshSceneNode *rr_arm = new MeshSceneNode(this, black_arm, vector3df(0, 0, 0),
|
---|
[15] | 123 | vector3df(0, 0, 45), texture);
|
---|
[8] | 124 |
|
---|
[15] | 125 | texture = getGui()->getTexture("metal047.jpg");
|
---|
[158] | 126 | MeshSceneNode *tfl_motor = new MeshSceneNode(this, motor, vector3df(70.71, -70.71, 2.5),
|
---|
[15] | 127 | vector3df(90, 0, 0), texture);
|
---|
[158] | 128 | MeshSceneNode *tfr_motor = new MeshSceneNode(this, motor, vector3df(70.71, 70.71, 2.5),
|
---|
[15] | 129 | vector3df(90, 0, 0), texture);
|
---|
[158] | 130 | MeshSceneNode *trl_motor = new MeshSceneNode(this, motor, vector3df(-70.71, -70.71, 2.5),
|
---|
[15] | 131 | vector3df(90, 0, 0), texture);
|
---|
[158] | 132 | MeshSceneNode *trr_motor = new MeshSceneNode(this, motor, vector3df(-70.71, 70.71, 2.5),
|
---|
[15] | 133 | vector3df(90, 0, 0), texture);
|
---|
[8] | 134 |
|
---|
[158] | 135 | MeshSceneNode *bfl_motor = new MeshSceneNode(this, motor, vector3df(70.71, -70.71, -17.5),
|
---|
[15] | 136 | vector3df(90, 0, 0), texture);
|
---|
[158] | 137 | MeshSceneNode *bfr_motor = new MeshSceneNode(this, motor, vector3df(70.71, 70.71, -17.5),
|
---|
[15] | 138 | vector3df(90, 0, 0), texture);
|
---|
[158] | 139 | MeshSceneNode *brl_motor = new MeshSceneNode(this, motor, vector3df(-70.71, -70.71, -17.5),
|
---|
[15] | 140 | vector3df(90, 0, 0), texture);
|
---|
[158] | 141 | MeshSceneNode *brr_motor = new MeshSceneNode(this, motor, vector3df(-70.71, 70.71, -17.5),
|
---|
[15] | 142 | vector3df(90, 0, 0), texture);
|
---|
[8] | 143 |
|
---|
[15] | 144 | tfl_blade = new Blade(this, vector3df(70.71, -70.71, 17.5));
|
---|
[339] | 145 | tfr_blade = new Blade(this, vector3df(70.71, 70.71, 17.5), vector3df(0, 0, 0), true);
|
---|
| 146 | trl_blade = new Blade(this, vector3df(-70.71, -70.71, 17.5), vector3df(0, 0, 0), true);
|
---|
[15] | 147 | trr_blade = new Blade(this, vector3df(-70.71, 70.71, 17.5));
|
---|
[8] | 148 |
|
---|
[15] | 149 | bfl_blade = new Blade(this, vector3df(70.71, -70.71, -17.5));
|
---|
[339] | 150 | bfr_blade = new Blade(this, vector3df(70.71, 70.71, -17.5), vector3df(0, 0, 0), true);
|
---|
| 151 | brl_blade = new Blade(this, vector3df(-70.71, -70.71, -17.5), vector3df(0, 0, 0),true);
|
---|
[15] | 152 | brr_blade = new Blade(this, vector3df(-70.71, 70.71, -17.5));
|
---|
[8] | 153 |
|
---|
[15] | 154 | motor_speed_mutex = new Mutex(this);
|
---|
| 155 | for (int i = 0; i < 8; i++)
|
---|
| 156 | motor_speed[i] = 0;
|
---|
| 157 | ExtraDraw();
|
---|
| 158 | #endif
|
---|
[8] | 159 | }
|
---|
| 160 |
|
---|
[15] | 161 | X8::~X8() {
|
---|
| 162 | // les objets irrlicht seront automatiquement detruits (moteurs, helices,
|
---|
| 163 | // pales) par parenté
|
---|
[8] | 164 | }
|
---|
| 165 |
|
---|
| 166 | #ifdef GL
|
---|
[15] | 167 | void X8::AnimateModel(void) {
|
---|
| 168 | motor_speed_mutex->GetMutex();
|
---|
[339] | 169 | tfl_blade->SetRotationSpeed(K_MOT * vector3df(0, 0,motor_speed[0]));
|
---|
| 170 | tfr_blade->SetRotationSpeed(-K_MOT * vector3df(0, 0,motor_speed[1]));
|
---|
| 171 | trl_blade->SetRotationSpeed(-K_MOT * vector3df(0, 0,motor_speed[2]));
|
---|
| 172 | trr_blade->SetRotationSpeed(K_MOT * vector3df(0, 0,motor_speed[3]));
|
---|
[8] | 173 |
|
---|
[339] | 174 | bfl_blade->SetRotationSpeed(-K_MOT * vector3df(0, 0,motor_speed[4]));
|
---|
| 175 | bfr_blade->SetRotationSpeed(K_MOT * vector3df(0, 0,motor_speed[5]));
|
---|
| 176 | brl_blade->SetRotationSpeed(K_MOT * vector3df(0, 0,motor_speed[6]));
|
---|
| 177 | brr_blade->SetRotationSpeed(-K_MOT * vector3df(0, 0,motor_speed[7]));
|
---|
[15] | 178 | motor_speed_mutex->ReleaseMutex();
|
---|
[8] | 179 |
|
---|
[370] | 180 | if (armColorR->ValueChanged() == true || armColorG->ValueChanged() == true || armColorB->ValueChanged() == true) {
|
---|
| 181 | getGui()->getSceneManager()->getMeshManipulator()->setVertexColors(colored_arm, SColor(0,armColorR->Value(), armColorG->Value(), armColorB->Value()));
|
---|
| 182 | }
|
---|
| 183 |
|
---|
| 184 |
|
---|
[15] | 185 | // adapt UAV size
|
---|
| 186 | if (arm_length->ValueChanged() == true) {
|
---|
| 187 | setScale(arm_length->Value());
|
---|
| 188 | }
|
---|
[8] | 189 | }
|
---|
| 190 |
|
---|
[15] | 191 | size_t X8::dbtSize(void) const {
|
---|
| 192 | return 6 * sizeof(float) + 4 * sizeof(float); // 6ddl+4helices
|
---|
[8] | 193 | }
|
---|
| 194 |
|
---|
[15] | 195 | void X8::WritedbtBuf(
|
---|
| 196 | char *dbtbuf) { /*
|
---|
| 197 | float *buf=(float*)dbtbuf;
|
---|
| 198 | vector3df vect=getPosition();
|
---|
| 199 | memcpy(buf,&vect.X,sizeof(float));
|
---|
| 200 | buf++;
|
---|
| 201 | memcpy(buf,&vect.Y,sizeof(float));
|
---|
| 202 | buf++;
|
---|
| 203 | memcpy(buf,&vect.Z,sizeof(float));
|
---|
| 204 | buf++;
|
---|
| 205 | vect=getRotation();
|
---|
| 206 | memcpy(buf,&vect.X,sizeof(float));
|
---|
| 207 | buf++;
|
---|
| 208 | memcpy(buf,&vect.Y,sizeof(float));
|
---|
| 209 | buf++;
|
---|
| 210 | memcpy(buf,&vect.Z,sizeof(float));
|
---|
| 211 | buf++;
|
---|
| 212 | memcpy(buf,&motors,sizeof(rtsimu_motors));*/
|
---|
[8] | 213 | }
|
---|
| 214 |
|
---|
[15] | 215 | void X8::ReaddbtBuf(
|
---|
| 216 | char *dbtbuf) { /*
|
---|
| 217 | float *buf=(float*)dbtbuf;
|
---|
| 218 | vector3df vect;
|
---|
| 219 | memcpy(&vect.X,buf,sizeof(float));
|
---|
| 220 | buf++;
|
---|
| 221 | memcpy(&vect.Y,buf,sizeof(float));
|
---|
| 222 | buf++;
|
---|
| 223 | memcpy(&vect.Z,buf,sizeof(float));
|
---|
| 224 | buf++;
|
---|
| 225 | setPosition(vect);
|
---|
| 226 | memcpy(&vect.X,buf,sizeof(float));
|
---|
| 227 | buf++;
|
---|
| 228 | memcpy(&vect.Y,buf,sizeof(float));
|
---|
| 229 | buf++;
|
---|
| 230 | memcpy(&vect.Z,buf,sizeof(float));
|
---|
| 231 | buf++;
|
---|
| 232 | ((ISceneNode*)(this))->setRotation(vect);
|
---|
| 233 | memcpy(&motors,buf,sizeof(rtsimu_motors));
|
---|
| 234 | AnimateModele();*/
|
---|
[8] | 235 | }
|
---|
[15] | 236 | #endif // GL
|
---|
[8] | 237 |
|
---|
[15] | 238 | // states are computed on fixed frame NED
|
---|
| 239 | // x north
|
---|
| 240 | // y east
|
---|
| 241 | // z down
|
---|
| 242 | void X8::CalcModel(void) {
|
---|
| 243 | float tfl_speed, tfr_speed, trl_speed, trr_speed;
|
---|
| 244 | float bfl_speed, bfr_speed, brl_speed, brr_speed;
|
---|
| 245 | float u_roll, u_pitch, u_yaw, u_thrust;
|
---|
| 246 | float omega;
|
---|
[214] | 247 | Time motorTime;
|
---|
[8] | 248 | #ifdef GL
|
---|
[15] | 249 | motor_speed_mutex->GetMutex();
|
---|
| 250 | #endif // GL
|
---|
[214] | 251 | motors->GetSpeeds(motor_speed,&motorTime);
|
---|
| 252 | if((GetTime()-motorTime)/1000000>motorTimeout->Value()) {
|
---|
| 253 | for(int i=0;i<8;i++) {
|
---|
| 254 | if(motor_speed[i]!=0) {
|
---|
| 255 | //Printf("timout\n");
|
---|
| 256 | for(int i=0;i<8;i++) motor_speed[i]=0;
|
---|
| 257 | break;
|
---|
| 258 | }
|
---|
| 259 | }
|
---|
| 260 | }
|
---|
[8] | 261 | #ifdef GL
|
---|
[15] | 262 | motor_speed_mutex->ReleaseMutex();
|
---|
| 263 | #endif // GL
|
---|
| 264 | tfl_speed = motor_speed[0];
|
---|
| 265 | tfr_speed = motor_speed[1];
|
---|
| 266 | trl_speed = motor_speed[2];
|
---|
| 267 | trr_speed = motor_speed[3];
|
---|
| 268 | bfl_speed = motor_speed[4];
|
---|
| 269 | bfr_speed = motor_speed[5];
|
---|
| 270 | brl_speed = motor_speed[6];
|
---|
| 271 | brr_speed = motor_speed[7];
|
---|
[8] | 272 |
|
---|
[15] | 273 | omega = tfl_speed + brl_speed + trr_speed + bfr_speed - bfl_speed -
|
---|
| 274 | trl_speed - brr_speed - tfr_speed;
|
---|
[8] | 275 |
|
---|
[15] | 276 | /*
|
---|
| 277 | ** ===================================================================
|
---|
| 278 | ** u roll: roll torque
|
---|
| 279 | **
|
---|
| 280 | ** ===================================================================
|
---|
| 281 | */
|
---|
[8] | 282 |
|
---|
[15] | 283 | u_roll = arm_length->Value() * k_mot->Value() *
|
---|
| 284 | (sigma->Value() * tfl_speed * tfl_speed + bfl_speed * bfl_speed +
|
---|
| 285 | sigma->Value() * trl_speed * trl_speed + brl_speed * brl_speed -
|
---|
| 286 | sigma->Value() * tfr_speed * tfr_speed - bfr_speed * bfr_speed -
|
---|
| 287 | sigma->Value() * trr_speed * trr_speed - brr_speed * brr_speed) *
|
---|
| 288 | sqrtf(2) / 2;
|
---|
[8] | 289 |
|
---|
[15] | 290 | /// Classical Nonlinear model of a quadrotor ( This is the w_x angular speed
|
---|
| 291 | /// of the quadri in the body frame). It is a discrete integrator
|
---|
| 292 | // state[0].W.x=(dT()/j_roll->Value())*((j_yaw->Value()-j_pitch->Value())*state[-1].W.y*state[-1].W.z-j_r->Value()*state[-1].W.y*omega
|
---|
| 293 | // + u_roll) +state[-1].W.x;//Osamah
|
---|
| 294 | state[0].W.x =
|
---|
| 295 | (dT() / j_roll->Value()) *
|
---|
| 296 | ((j_pitch->Value() - j_yaw->Value()) * state[-1].W.y * state[-1].W.z -
|
---|
| 297 | j_r->Value() * state[-1].W.y * omega + u_roll) +
|
---|
| 298 | state[-1].W.x; // Majd
|
---|
[8] | 299 |
|
---|
[15] | 300 | // state[0].W.x=(dT()/j_roll->Value())*(u_roll-m->Value()*G*l_cg->Value()*sinf(state[-2].W.x)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.x)+state[-1].W.x;
|
---|
[8] | 301 |
|
---|
[15] | 302 | /*
|
---|
| 303 | ** ===================================================================
|
---|
| 304 | ** u pitch : pitch torque
|
---|
| 305 | **
|
---|
| 306 | ** ===================================================================
|
---|
| 307 | */
|
---|
| 308 | u_pitch = arm_length->Value() * k_mot->Value() *
|
---|
| 309 | (sigma->Value() * tfl_speed * tfl_speed + bfl_speed * bfl_speed +
|
---|
| 310 | sigma->Value() * tfr_speed * tfr_speed + bfr_speed * bfr_speed -
|
---|
| 311 | sigma->Value() * trl_speed * trl_speed - brl_speed * brl_speed -
|
---|
| 312 | sigma->Value() * trr_speed * trr_speed - brr_speed * brr_speed) *
|
---|
| 313 | sqrtf(2) / 2;
|
---|
[8] | 314 |
|
---|
[15] | 315 | /// Classical Nonlinear model of a quadrotor ( This is the w_y angular speed
|
---|
| 316 | /// of the quadri in the body frame). It is a discrete integrator
|
---|
| 317 | // state[0].W.y=(dT()/j_pitch->Value())*((j_roll->Value()-j_yaw->Value())*state[-1].W.x*state[-1].W.z-j_r->Value()*state[-1].W.x*omega
|
---|
| 318 | // + u_pitch)+state[-1].W.y;//Osamah
|
---|
| 319 | state[0].W.y =
|
---|
| 320 | (dT() / j_pitch->Value()) *
|
---|
| 321 | ((j_yaw->Value() - j_roll->Value()) * state[-1].W.x * state[-1].W.z -
|
---|
| 322 | j_r->Value() * state[-1].W.x * omega + u_pitch) +
|
---|
| 323 | state[-1].W.y; // Majd
|
---|
[8] | 324 |
|
---|
[15] | 325 | // state[0].W.y=(dT()/j_pitch->Value())*(u_pitch-m->Value()*G*l_cg->Value()*sinf(state[-2].W.y)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.y)+state[-1].W.y;
|
---|
[8] | 326 |
|
---|
[15] | 327 | /*
|
---|
| 328 | ** ===================================================================
|
---|
| 329 | ** u yaw : yaw torque
|
---|
| 330 | **
|
---|
| 331 | ** ===================================================================
|
---|
| 332 | */
|
---|
| 333 | u_yaw = c_mot->Value() * (tfl_speed * tfl_speed - bfl_speed * bfl_speed +
|
---|
| 334 | trr_speed * trr_speed - brr_speed * brr_speed -
|
---|
| 335 | tfr_speed * tfr_speed + bfr_speed * bfr_speed -
|
---|
| 336 | trl_speed * trl_speed + brl_speed * brl_speed);
|
---|
[8] | 337 |
|
---|
[15] | 338 | /// Classical Nonlinear model of a quadrotor ( This is the w_z angular speed
|
---|
| 339 | /// of the quadri in the body frame). It is a discrete integrator
|
---|
| 340 | // state[0].W.z=(dT()/j_yaw->Value())* u_yaw +state[-1].W.z;//Osamah
|
---|
| 341 | state[0].W.z =
|
---|
| 342 | (dT() / j_yaw->Value()) * ((j_roll->Value() - j_pitch->Value()) *
|
---|
| 343 | state[-1].W.x * state[-1].W.y +
|
---|
| 344 | u_yaw) +
|
---|
| 345 | state[-1].W.z; // Majd
|
---|
[8] | 346 |
|
---|
[15] | 347 | // state[0].W.z=(dT()/j_yaw->Value())*(u_yaw-f_air_lat->Value()*state[-1].W.z)+state[-1].W.z;
|
---|
[8] | 348 |
|
---|
[15] | 349 | // compute quaternion from W
|
---|
| 350 | // Quaternion derivative: dQ = 0.5*(Q*Qw)
|
---|
| 351 | Quaternion dQ = state[-1].Quat.GetDerivative(state[0].W);
|
---|
[8] | 352 |
|
---|
[15] | 353 | // Quaternion integration
|
---|
| 354 | state[0].Quat = state[-1].Quat + dQ * dT();
|
---|
| 355 | state[0].Quat.Normalize();
|
---|
[8] | 356 |
|
---|
[15] | 357 | // Calculation of the thrust from the reference speed of motors
|
---|
| 358 | u_thrust =
|
---|
| 359 | k_mot->Value() * S->Value() *
|
---|
| 360 | (sigma->Value() * tfl_speed * tfl_speed +
|
---|
| 361 | sigma->Value() * tfr_speed * tfr_speed +
|
---|
| 362 | sigma->Value() * trl_speed * trl_speed +
|
---|
| 363 | sigma->Value() * trr_speed * trr_speed + bfl_speed * bfl_speed +
|
---|
| 364 | bfr_speed * bfr_speed + brl_speed * brl_speed + brr_speed * brr_speed);
|
---|
[167] | 365 | Vector3D<double> vect(0, 0, -u_thrust);
|
---|
[15] | 366 | vect.Rotate(state[0].Quat);
|
---|
[8] | 367 |
|
---|
[15] | 368 | /*
|
---|
| 369 | ** ===================================================================
|
---|
| 370 | ** x double integrator
|
---|
| 371 | **
|
---|
| 372 | ** ===================================================================
|
---|
| 373 | */
|
---|
| 374 | state[0].Pos.x =
|
---|
| 375 | (dT() * dT() / m->Value()) *
|
---|
| 376 | (vect.x -
|
---|
| 377 | f_air_lat->Value() * (state[-1].Pos.x - state[-2].Pos.x) / dT()) +
|
---|
| 378 | 2 * state[-1].Pos.x - state[-2].Pos.x;
|
---|
| 379 | state[0].Vel.x = (state[0].Pos.x - state[-1].Pos.x) / dT();
|
---|
[8] | 380 |
|
---|
[15] | 381 | /*
|
---|
| 382 | ** ===================================================================
|
---|
| 383 | ** y double integrator
|
---|
| 384 | **
|
---|
| 385 | ** ===================================================================
|
---|
| 386 | */
|
---|
| 387 | state[0].Pos.y =
|
---|
| 388 | (dT() * dT() / m->Value()) *
|
---|
| 389 | (vect.y -
|
---|
| 390 | f_air_lat->Value() * (state[-1].Pos.y - state[-2].Pos.y) / dT()) +
|
---|
| 391 | 2 * state[-1].Pos.y - state[-2].Pos.y;
|
---|
| 392 | state[0].Vel.y = (state[0].Pos.y - state[-1].Pos.y) / dT();
|
---|
[8] | 393 |
|
---|
[15] | 394 | /*
|
---|
| 395 | ** ===================================================================
|
---|
| 396 | ** z double integrator
|
---|
| 397 | **
|
---|
| 398 | ** ===================================================================
|
---|
| 399 | */
|
---|
| 400 | state[0].Pos.z =
|
---|
| 401 | (dT() * dT() / m->Value()) *
|
---|
| 402 | (vect.z +
|
---|
| 403 | f_air_vert->Value() * (state[-1].Pos.z - state[-2].Pos.z) / dT() +
|
---|
| 404 | m->Value() * G) +
|
---|
| 405 | 2 * state[-1].Pos.z - state[-2].Pos.z;
|
---|
| 406 | state[0].Vel.z = (state[0].Pos.z - state[-1].Pos.z) / dT();
|
---|
[8] | 407 |
|
---|
| 408 | #ifndef GL
|
---|
[15] | 409 | if (state[0].Pos.z < 0)
|
---|
| 410 | state[0].Pos.z = 0;
|
---|
[8] | 411 | #endif
|
---|
| 412 | }
|
---|
| 413 |
|
---|
| 414 | } // end namespace simulator
|
---|
| 415 | } // end namespace flair
|
---|